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Abstract

We study various types of weakly Jauch–Piron states and various types
of state-space properties in effect algebras. We generalize several results
of Tkadlec [4, 6] and of Matoušek and Pták [3]. In particular, we show
when an effect algebra is an orthomodular poset, when a unital set of
states is strongly order determining, and we present some state space
characterizations of Boolean algebras.
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1 Introduction

Effect algebras (and their equivalents D-posets) become a basic notion for quan-
tum structures (originated in quantum physics) as “unsharp” generalizations of
orthomodular lattices, orthomodular posets and orthoalgebras [1, 2].

Most of the results of this paper are stated for effect algebras with the
maximality property. The maximality property was introduced by Tkadlec [4, 5]
as a common generalization of lattices and of the orthocompleteness (and some
other properties, too). It leads to generalizations of quite a few results stated
originally for lattices or orthocomplete structures, see, e.g., [4, 5, 6].

We study various types of weakly Jauch–Piron states and various types of
state-space properties in effect algebras, some of them introduced by Matoušek
and Pták [3].

We show that every effect algebra with the maximality property and with
a unital set of states is an orthomodular poset (this generalizes [6, Proposi-
tions 3.3]), that a unital set of weakly Jauch—Piron states in an effect algebra
with the maximality property is strongly order determining (this generalizes [6,
Theorem 3.4]) and present two characterizations of Boolean algebras generaliz-
ing results of [3, Theorem 2.3, Theorem 2.4].

2 Basic notions and properties

2.1 Definition. An effect algebra is an algebraic structure (E,⊕,0,1) such
that E is a set, 0 and 1 are different elements of E, and ⊕ is a partial binary
operation on E such that for every a, b, c ∈ E the following conditions hold:
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(1) a⊕ b = b⊕ a, if one side exists;
(2) a⊕ (b⊕ c) = (a⊕ b)⊕ c, if one side exists;
(3) there is a unique orthosupplement a′ such that a⊕ a′ = 1;
(4) a = 0 whenever a⊕ 1 is defined.

For simplicity, we will use the notation E for an effect algebra. A partial
ordering on an effect algebra E is defined by a ≤ b if there is a c ∈ E such that
b = a ⊕ c. Such an element c is unique (if it exists) and is denoted by b 	 a.
In particular, 1 	 a = a′. With respect to this partial ordering, 0 (1, resp.) is
the least (the greatest, resp.) element of E. The orthosupplementation is an
antitone involution, i.e., for every a, b ∈ E, a′′ = a and b′ ≤ a′ whenever a ≤ b.
An orthogonality relation on E is defined by a ⊥ b if a⊕ b exists (that is if and
only if a ≤ b′). It can be shown that a ⊕ 0 = a for every a ∈ E and that the
cancellation law is valid: if a⊕c ≤ b⊕c then a ≤ b (in particular, if a⊕c = b⊕c
then a = b). See, e.g., [1, 2].

We will deal also with some special effect algebras.

2.2 Definition. Let E be an effect algebra. An element a ∈ E is principal if
b⊕ c ≤ a for every b, c ∈ E such that b, c ≤ a and b ⊥ c.

An orthomodular poset is an effect algebra in which every element is princi-
pal.

An orthomodular lattice is an orthomodular poset that is a lattice.

The following notions were introduced by Tkadlec ([4] for orthomodular
posets, [5] for effect algebras).

2.3 Definition. An effect algebra has the maximality property if every pair of
its elements has a maximal lower bound.

An effect algebra E is weakly Boolean if for every a, b ∈ E the condition
a ∧ b = a ∧ b′ = 0 implies a = 0.

Let us remark that since ′ is an antitone involution, the maximality prop-
erty is equivalent to the existence of a minimal upper bound for every pair of
elements.

We will study several generalizations of Jauch–Piron states. The notions
of weakly Jauch–Piron state and weakly positive state were introduced by Ma-
toušek and Pták [3] for orthomodular lattices and are generalized here for effect
algebras, the notion of weakly* positive state is a generalization of a weakly
positive state. All these properties appeared (unnamed) in [4].

2.4 Definition. Let E be an effect algebra.
A state on E is a mapping s : E → [0, 1] such that (1) s(1) = 1 and

(2) s(a⊕ b) = s(a) + s(b) whenever a ⊥ b.
A state s on E is Jauch–Piron if for every a, b ∈ E with s(a) = s(b) = 1

there is a c ∈ E such that c ≤ a, b and s(c) = 1.
A state s on E is weakly Jauch–Piron if for every a, b ∈ E with s(a) = s(b) =

1 there is a nonzero lower bound of a, b (i.e., it is not true that a ∧ b = 0).
A state s on E is weakly positive if for every a, b ∈ E with s(a) = 1 and

s(b) > 0 there is a nonzero lower bound of a, b.
A state s on E is weakly* positive if for every a, b ∈ E with s(a) = 1 and

s(b) ≥ 1
2 there is a nonzero lower bound of a, b.
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Obviously, a Jauch–Piron state is weakly Jauch–Piron, a weakly positive
state is weakly* positive, a weakly* positive state is weakly Jauch–Piron.

We also use various notions of state-space properties. The notion of strongly
unital set of states was introduced by Matoušek and Pták [3] for orthomodular
latices.

2.5 Definition. Let E be an effect algebra.
A set S of states on E is unital if, for every a ∈ E \ {0}, there is a state

s ∈ S such that s(a) = 1.
A set S of states on E is strongly order determining if, for every a, b ∈ E

with a 6≤ b, there is a state s ∈ S such that s(a) = 1 > s(b).
A set S of states on E is strongly unital if, for every a, b ∈ E with a 6≤ b,

there is a state s ∈ S such that s(a) = 1 and s(b) = 0.

Obviously, a strongly unital set of states is strongly order determining and
a strongly order determining set of states is unital.

3 Results

The following two statements generalize [6, Proposition 3.3, Theorem 3.4] stated
for Jauch–Piron states.

3.1 Proposition. Every effect algebra with the maximality property and with
a unital set of weakly Jauch–Piron states is an orthomodular poset.

Proof. Let E be an effect algebra with the maximality property and with a
unital set S of Jauch–Piron states that is not is not an orthomodular poset and
seek a contradiction. There are elements a, b, c ∈ E such that b, c ≤ a, b ⊥ c and
b⊕ c 6≤ a. Let us denote d = b⊕ c. Since E has the maximality property, there
is a maximal lower bound e of a′, d′. Since d 6≤ a, we obtain that a′ 6≤ d′ and
therefore e < a′ and a′ 	 e 6= 0. Since the set S is unital, there is a state s ∈ S
such that s(a′ 	 e) = 1. Hence s(a′) = 1, 0 = s(e) = s(a) = s(b) = s(c) = s(d),
s(d′) = 1, s(d′ 	 e) = 1. Since the state s is weakly Jauch–Piron, there is an
element f ∈ E\{0} such that f ≤ (a′	e), (d′	e). Hence e < e⊕f ≤ a′, d′—this
contradicts to the maximality of e.

3.2 Theorem. A set of weakly Jauch–Piron states on an effect algebra with the
maximality property is unital if and only if it is strongly order determining.

Proof. ⇐: Obvious.
⇒: Let E be an effect algebra with the maximality property and with a

unital set S of weakly Jauch–Piron states. Let a, b ∈ E such that a 6≤ b. Let
c ∈ E be a maximal lower bound of a, b. Then c < a and therefore a 	 c 6= 0.
Since the set S is unital, there is a state s ∈ S such that s(a	c) = 1 and therefore
s(a) = 1. Let us suppose that s(b) = 1 and seek a contradiction. Since s is
weakly Jauch–Piron, there is an element d ∈ E \ {0} such that d ≤ a	 c, d ≤ b.
Hence c < c⊕ d ≤ a. According to Proposition 3.1, b is principal and therefore
c⊕ d ≤ b—this contradicts to the maximality of c.

The following proposition is an analogue of [4, Proposition 2.2 (5)] or [5,
Proposition 2.5 (2)] (“sufficiently enough” “sufficiently good” states force weakly
Boolean structure).
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3.3 Proposition. Let E be an effect algebra, x ∈ [0, 1], S be a set of states on
E such that the following conditions hold:

(1) for every a, b ∈ E with a 6≤ b there is a state s ∈ S such that s(a) = 1
and s(b) ≤ x (s(b) < x, resp.);

(2) s(b) < 1 − x (s(b) ≤ 1 − x, resp.) whenever a, b ∈ E and s ∈ S with
s(a) = 1 and a ∧ b = 0.

Then E is weakly Boolean.

Proof. Let a, b ∈ E with a ∧ b = a ∧ b′ = 0. Let us suppose that a 6= 0
and seek a contradiction. Since a 6≤ b, we obtain, according to condition (1),
that there is an s ∈ S such that s(a) = 1 and s(b) ≤ x (s(b) < x, resp.).
Hence s(b′) = 1 − s(b) ≥ 1 − x (s(b′) > 1 − x, resp.). This contradicts to
condition (2).

3.4 Proposition. Every effect algebra with a strongly unital set of weakly
Jauch–Piron states is weakly Boolean.

Proof. It is a consequence of Proposition 3.3 for x = 0.

The following theorem was proved in [4, Theorem 4.2].

3.5 Theorem. Every weakly Boolean orthomodular poset with the maximality
property is a Boolean algebra.

The following statement generalizes the result of Matoušek and Pták [3,
Theorem 2.3] stated for orthomodular lattices.

3.6 Theorem. An effect algebra with the maximality property is a Boolean
algebra if and only if it possesses a strongly unital set of weakly Jauch–Piron
states.

Proof. ⇒: This is well-known.
⇐: Let E be an effect algebra with the maximality property and with a

strongly unital set of weakly Jauch–Piron states. A strongly unital set of states
is unital, hence, according to Proposition 3.1, E is an orthomodular poset. Ac-
cording to Proposition 3.4, E is weakly Boolean and, according to Theorem 3.5,
E is a Boolean algebra.

The following statement generalizes the result of Matoušek and Pták [3,
Theorem 2.4] stated for orthomodular lattices with a unital set of weakly positive
states.

3.7 Theorem. An effect algebra with the maximality property is a Boolean
algebra if and only if it possesses a unital set of weakly* positive states.

Proof. ⇒: Obvious.
⇐: Let E be an effect algebra with the maximality property and with a

unital set of weakly* positive states. Every weakly* positive state is weakly
Jauch–Piron, hence, according to Proposition 3.1, E is an orthomodular poset.
According to [4, Proposition 2.2 (4’u)], E is weakly Boolean and, according to
Theorem 3.5 E is a Boolean algebra.
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[1] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures.
Kluwer Academic Publishers, Bratislava, 2000. doi: 10.1007/978-94-017-
2422-7

[2] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics,
Found. Phys. 24 (1994), 1331–1352. doi: 10.1007/BF02283036
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