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SET REPRESENTATIONS OF
ORTHOPOSETS

Josef Tkadlec

Since the Stone representation of Boolean algebras (by means of clopen
subsets of totally disconnected compact Hausdorff topological space) it has
been natural to find connections between algebraical and topological struc-
tures. Here we study this question for orthoposets. Ideally, we would like to
find set representation of an orthoposet such that the least element corresponds
to the empty set, the partial ordering corresponds to the inclusion relation,
the orthocomplementation corresponds to the set theoretical complementation
and (finite) orthogonal suprema correspond to set theoretical unions. How-
ever, it was shown by Gudder [2] that such a representation exists exactly for
orthoposets (quantum logics) with a full set of two-valued states. Thus it is
necessary to give up the latter correspondence and look for a weaker one.

Previously, the investigation went in two directions. The first line is based
on the concept of an M-base (Marlow [6], Mayet [7], Katrnoška [4, 5] and
led to a set representation of an orthoposet. The second line is the effort
to find “better” representation of orthomodular posets (quantum logics) in
the sense that some (finite) orthogonal suprema correspond to unions. As
a result, the representation then corresponds to the Stone representation for
some Boolean subalgebras of orthomodular posets in question (Zierler, Sch-
lessinger [10], Iturrioz [3], Binder, Pták [1] for the center, Tkadlec [9] for a
given Boolean subalgebra).

In this paper we present a common generalization of all these results. The
proofs will be published elsewhere.

1 Basic notions

Definition. A closure space is a pair (S, ) such that S 6= ∅ and : S → S is
a closure operation, i.e.,

(1) ∅ = ∅,
(2) A ⊂ A,
(3) A ⊂ B ⇒ A ⊂ B,
(4) A = A.

A set A ⊂ S is called closed, if A = A, open, if S \ A is closed, clopen
(denoted A ∈ CO(S)), if A,S \A are open.

A family B ⊂ expS of open sets is called a base of open sets if for any
open A ⊂ S there is a B1 ⊂ B such that A =

⋃
B1.

1



A closure space (S, ) is called Hausdorff if any pair of points from S is
separated by disjoint open sets, compact if any open covering of S has a finite
subcovering, 0-dimensional if CO(S) is a base of open sets.

The union of two closed sets (the intersection of two open sets, resp.) in
closure space need not be closed (open). On the other hand, the intersection
of any family of closed sets (the union of any family of open sets, resp.) has
to be closed (open).

If we replace the condition (3) by the stronger condition

(3’) A ∪B = A ∪B,

we obtain the definition of a topological space.
Every 0-dimensional Hausdorff closure space is totally disconnected, i.e.

any pair of points is separated by disjoint clopen sets.
Every family B ⊂ exp S such that

⋃
B = S is as a base of open sets for

some closure space (S, ) (we put A = S \
⋃
{B ∈ B;B ∩ A = ∅} for any

A ⊂ S).

Definition. An orthoposet is a triple (P,≤,′ ) such that

(1) (P,≤) is a poset with the least element 0 and the greatest element 1,
(2) ’:P → P is an orthocomplementation, i.e., for any a, b ∈ P we have

(a) a′′ = a, (b) a ≤ b ⇒ b′ ≤ a′, (c) a ∨ a′ = 1.

Further, elements a, b ∈ P are called orthogonal (denoted a ⊥ b) if a ≤ b′.
Let us write OS(P ) = {(a1, ..., an) ∈ Pn; a1, ..., an are pairwise orthogonal

and a1 ∨ ... ∨ an ∈ P}.

2 Results

Definition. Let (P,≤,′ ) be an orthoposet. Let us suppose that R ⊂ OS(P ).
By a partially additive state on P with respect to R (abbr. R-state) we mean
a mapping s : P → [0, 1] such that

(1) s(1) = 1,
(2) ∀a, b ∈ P : a ≤ b ⇒ s(a) ≤ s(b),

(3a) ∀a ∈ P : s(a) + s(a′) = 1,
(3b) ∀(a1, ..., an) ∈ R : s(a1) + ... + s(an) = s(a1 ∨ ... ∨ an).

A set S of some partially additive states is called full if for any a, b ∈ P ,
a 6≤ b, there is an s ∈ S such that s(a) 6≤ s(b).

A partially additive state (i.e., with respect to ∅) s is called Jauch–Piron if
for any a, b ∈ P such that s(a) = s(b) = 1, there is a c ∈ P such that c ≤ a, b
and s(c) = 1.
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Examples. 1. R = ∅. Each R-state s corresponds to the M-base s−1(1) [6,
7, 5, 4].

2. R = OS(C(P )), where C(P ) is the center of P ([10, 3] for a logic P ).
3. R =⊥ ∩(P × C(P )), C(P ) as above ([8, 1] for a logic P ).
4. R = OS(B), where B is a Boolean subalgebra of P ([9] for a logic P ).
5. R = OS(P ) ([2] for a logic P ).

Theorem. Suppose that (P,≤,′ ) is an orthoposet, R ⊂ OS(P ), S is nonempty
set of some two-valued R-states on P , i : (P,≤,′ ) → (exp S,⊂,c ), where
i(a) = {s ∈ S; s(a) = 1} for any a ∈ P and i(P ) is the base of open sets in
(S, ). Then

(1) i is a homomorphism.
(2) i(P ) ⊂ CO(S).
(3) (S, ) is a 0-dimensional Hausdorff closure space.
(4) If M⊂ i(P ) and

∨
M exists in (i(P ),⊂), then

∨
M =

⋃
M.

(5) For any (a1, ..., an) ∈ P we have i(a1 ∨ ... ∨ an) = i(a1) ∪ ... ∪ i(an) =
i(a1) ∨ ... ∨ i(an).

(6) i is an embedding iff S is full.
(7) If S is the set of all two-valued R-states, then (S, ) is a compact

closure space.
(8) If P is an ortholattice, S is the set of all two-valued R-states and is

full, then i(P ) = CO(S).
(9) If S is full then (S, ) is a topological space iff each s ∈ S is Jauch–

Piron.

Theorem. Let P be an orthoposet and let B be a Boolean subalgebra of P ,
R = OS(B). Then the set of all two-valued R-states is full.

Corollary. Let P be an orthoposet and let B be a Boolean subalgebra of P ,
R = OS(B). Then there is a set representation of P by means of clopen sets in
a 0-dimensional compact Hausdorff closure space such that the image of B is
“almost” its Stone representation (i.e., the (finite) suprema in B correspond to
set theoretical unions). Moreover, if P is an ortholattice, then we can ensure
that the representation contains all clopen sets.

3 Open problems

Problem. Is the set of all two-valued R-states on P full for “better” (greater)
R ⊂ OS(P )?

Problem. When i(P ) = CO(S)?
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The answer to the first problem is in general no for R = OS(B1)∪OS(B2),
B1, B2 Boolean subalgebras of P [9] and it is not known for R =⊥ ∩(B2∪P ×
C(P ), B Boolean subalgebra of a logic P .

i(P ) = CO(S) also for some non-lattice logics P .
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