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BOOLEAN ORTHOPOSETS AND
TWO-VALUED JAUCH–PIRON STATES

Josef Tkadlec

ABSTRACT. A Boolean orthoposet is the orthoposet P fulfilling the
following condition: if a ∧ b = 0 then a ⊥ b. Boolean orthoposets enjoy
some properties of Boolean algebras but, in some sense, they are far
away of them [3, 4, 8]. An important notion in quantum logic theory
is the notion of Jauch–Piron state [2, 5, 6, 7]. In this paper, we show
connections between Boolean orthoposets and orthoposets with a proper
number of Jauch–Piron states: We demonstrate that an orthoposet with
“enough” two-valued Jauch–Piron states is Boolean and, on the other
hand, we give several examples of Boolean orthoposets without any two-
valued Jauch–Piron state.

1. Basic notions

The connections mentioned above can be studied for orthoposets without
assuming the orthomodular law and even without assuming the existence of
suprema of pairs of orthogonal elements. Since the main purpose of this paper
is to present examples of Boolean orthomodular orthoposets without any two-
valued Jauch–Piron state, it seems to be more convenient to deal with more
familiar (and less general) notions. The details concerning a general setting
can be found in [9].

Definition 1.1. An orthomodular poset is a triple (P,≤,′ ) such that
(1) (P,≤) is a partially ordered set with a least and a greatest elements

0, 1;
(2) ′ : P → P is an orthocomplementation, i.e., (i) a′′ = a, (ii) a ≤ b ⇒

b′ ≤ a′, (iii) a ∨ a′ = 1 for every a, b ∈ P ;
(3) the orthomodular law is valid in (P,≤,′ ), i.e., (i) a∨b ∈ P whenever

a, b ∈ P are orthogonal (i.e., a ≤ b′, denoted by a ⊥ b), (ii) b =
a ∨ (b ∧ a′) whenever a ≤ b.

An orthomodular poset (P,≤,′ ) is Boolean if
(4) a ⊥ b whenever a ∧ b = 0.
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Let us note that the property a∨ a′ = 1 of the orthocomplementation is a
consequence of the orthomodular law. In the sequel we shall shortly write P
instead of (P,≤,′ ).

Definition 1.2. A two-valued Jauch–Piron state on an orthomodular poset P
is a mapping s : P → {0, 1} such that

(1) s(1) = 1;
(2) s(a ∨ b) = s(a) + s(b) whenever a ⊥ b;
(3) s(a) = s(b) = 1 implies that there is a c ≤ a, b with s(c) = 1.

Let us note that the condition (3) can be reformulated dually for a finite
number of elements:

(3’) s(a1) = . . . = s(an) = 0 implies that there is a c ≥ a1, . . . , an with
s(c) = 0.

2. Concrete representation

Every Boolean orthomodular poset has a suitable set representation.

Definition 2.1. An orthomodular poset P is called concrete if there is a set
X (called domain of P ) such that P ⊂ expX and such that

(1) 0 = ∅;
(2) A ≤ B iff A ⊂ B;
(3) A′ = X \A.

Let us observe that A ⊥ B iff A ∩ B = ∅ and that 1 = X for every
concrete orthomodular poset P with the domain X. It can be easily checked
that a family P ⊂ expX forms a concrete orthomodular poset iff the following
conditions are fulfilled:

(1) ∅ ∈ P ;
(2) X \A ∈ P whenever A ∈ P ;
(3) A ∪B ∈ P whenever A,B ∈ P with A ∩B = ∅.

Thus, starting with an arbitrary family P ′ ⊂ expX we can construct the least
concrete orthomodular poset P ⊃ P ′ with the domain X (we say that P is
generated by P ′) — every nonempty element of P arises from elements of P ′

as a result of a finite number of operations of relative complement and of union
of two disjoint elements.

The following theorem was proved in [4].

Theorem 2.2. Every Boolean orthomodular poset has a concrete represen-
tation.

According to this theorem we can (and we shall) use this concrete repre-
sentation in the sequel. A concrete orthomodular poset P is Boolean iff the
following condition (reformulation of condition (4) of Definition 1.1) is fulfilled:
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(B) A ∩ B 6= ∅ (i.e., there is an x ∈ A ∩ B) implies that there is a
C ∈ P \ {∅} with C ⊂ A ∩B (see Fig. 1).

Let us note that there need not be any connection between the point x and
the element C.

Every point x ∈ X corresponds to some state sx (carried by a point x) on
a concrete orthomodular poset with the domain X defined by

sx(E) =
{

0, if x 6∈ E,
1, if x ∈ E.

The state sx is Jauch–Piron iff the following condition (reformulation of con-
dition (3) of Definition 1.2) is fulfilled:

(JP) x ∈ A ∩ B implies that there is a C ∈ P with x ∈ C ⊂ A ∩ B (see
Fig. 2).
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It is easily seen that conditions (B) and (JP) are closely related. In order
to have a concrete representation of an orthomodular poset P , it is necessary
(and sufficient) to have a full set S of two-valued states on P (for every pair
a 6≤ b there is an s ∈ S with s(a) 6≤ s(b)) (see e.g. [1, Theorem 3.28] or [6,
Theorem 2.2.1]). Thus, comparing conditions (B) and (JP) we obtain:

Theorem 2.3. Every orthomodular poset with a full set of two-valued Jauch–
Piron states (i.e., with such a concrete representation that every point of the
domain carries a Jauch–Piron state) is Boolean.

Let us state a lemma we shall use in the sequel.

Lemma 2.4. Let s be a two-valued Jauch–Piron state on a concrete ortho-
modular poset P . Let B ∈ P with s(B) = 1 and let A1, . . . , An ∈ P such that
B ⊂ A1 ∪ . . . ∪An. Then there is an A ∈ {A1, . . . , An} with s(A) = 1.

Proof. Let us suppose that s(A1) = . . . = s(An) = 0 and seek a contradic-
tion. According to the reformulation (3’) of condition (3) of Definition 1.2,
there is a C ∈ P with s(C) = 0 such that C ⊃ A1 ∪ . . . ∪ An. Since
B ⊂ A1 ∪ . . . ∪An ⊂ C we have s(B) ≤ s(C) = 0 which is a contradiction. 2

3. Ideas of construction

We shall give examples which prove the following statement that completes
Theorem 2.3.
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Theorem 3.1. There is a Boolean orthomodular poset that has no two-valued
Jauch–Piron state.

Before we construct an appropriate orthomodular poset P , let us give the
following ideas and conditions with a sketch of the proof.

(1) P is a concrete orthomodular poset generated by a “nice” subsets of
some X ⊂ Rn. Let “nice” set means convex and open with some points
of its boundary.

(2) Conditions that force P to be Boolean:

(2a) For every A,B ∈ P with A∩B 6= ∅ there is a nonempty open subset
of A ∩B.

(2b) Every nonempty open subset of X contains some nonempty element
of P .

Condition (2a) is obviously fulfilled for open sets A,B. Since usually not all
elements of P can be open, every element E ∈ P will include some (appropri-
ately chosen) points of its boundary. To fulfill condition (2b) we shall use at
least one bounded generator such that any homothetic image of it belonging
to X is a generator, too.

If the above mentioned conditions are fulfilled, then for a two-valued Jauch–
Piron state s on P with s(A1) = 1 for some bounded set A1 we can use
the following procedure: A1 can be covered by a finite number of “smaller”
elements of P . According to Lemma 2.4, there is an element of this cover-
ing with s(A2) = 1. Repeating this procedure we (can) obtain a sequence
A1, A2, . . . ∈ P that converges to some x with the following property (we say
that the state s is concentrated at x):

(C) s(E) = 0 whenever E ∈ P with dist(E, x) > 0.

(3) Conditions that force P to have no two-valued Jauch–Piron state.

(3a) Density of every generator of P at every x ∈ X is a multiple of 1/K
(for a suitable positive integer K).
Density of a set E at a point x is defined by

D(E, x) = lim
r→0+

λ(E ∩B(x, r))
λ(B(x, r))

where B(x, r) is the ball with the center x and the radius r, λ
denotes the n-dimensional Lebesgue measure.

(3b) For every Jauch–Piron state s on P concentrated at x there are
A,B ∈ P such that s(A) = s(B) = 1 and D(A ∩B, x) < 1/K.

We have shown that every two-valued Jauch–Piron state is concentrated at
some x. According to condition (3b), for every C ⊂ A∩B we have D(C, x) ≤
D(A ∩ B, x) < 1/K. Since condition (3a) is fulfilled for any E ∈ P (this
condition is preserved by forming unions and relative complements) we have
D(C, x) = 0. Hence, according to condition (1), dist(C, x) > 0 and, according
to condition (C), s(C) = 0. Thus, s is not Jauch–Piron.
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4. Examples

Let us give several examples of Boolean orthomodular posets without any
two-valued Jauch–Piron state.

Example 4.1. Let X be the square (in the plane R2, see Fig. 3). And let P
be generated by bilateral rectangular triangles E ⊂ X fulfilling the following
condition:

a point x of the boundary of E belongs to E iff x is on the “left
boundary” (i.e., E is placed to the right from x) or on the “bottom
boundary” (i.e., E is placed above x) for horizontal boundary line
segments (see Fig. 4 for examples.).
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Fig. 4

It is easy to see that X and all generators have the following property of E:
(∗) x ∈ E iff x is a “left bottom” boundary for some open angle start-

ing with horizontal halfline that “locally belongs” to E (A(x, α) in
Fig. 5).
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Since this property is preserved by forming unions and relative comple-
ments (boundaries are finite unions of line segments), every E ∈ P fulfills
it. Since this property is preserved by forming intersections, condition (2a) is
fulfilled. It is easy to see that conditions (1), (2b), (3a) are fulfilled (K = 8
in condition (3a)). It remains to check condition (3b). Indeed, we can cover
the neighbourhood of x (in X) by 8 (4 or 2 if x is on the boundary of X)
mutually disjoint generators (see Fig. 6). Since s is concentrated at x, there
is one of these generators, say A, with S(A) = 1. Analogously, we obtain a
B ∈ P with s(B) = 1 if we rotate the whole situation around x by 2π/16.
(If x is on the boundary of X, one triangle will not be a subset of X — in-
stead of it we take the orthocomplement of the union of remaining ones.) Then
D(A ∩B, x) = 1/16 < 1/8.

5



Let us present further examples without proof (it is analogous to the previ-
ous one). A larger example we obtain if we use density property of generators
instead of their description.

Example 4.2. Let X be the square as in Example 4.1 and let P be the
concrete orthomodular poset of all E ⊂ X such that the boundary of E consists
of a finite number of line segments, condition (∗) from Example 4.1 is fulfilled
and such that D(E, x) is a multiple of 1/8 for every x ∈ R2.

Another example we obtain if we use open balls.

Example 4.3. Let P be the orthomodular poset generated by open balls
and by some open half-spaces (e.g., for every pair of opposite orientations of
hyperplanes we choose exactly one and for every hyperplane we take the open
half-space with the chosen orientation) in Rn, n ≥ 3.

Let us note that if we omit open half-spaces as generators, the resulting
orthomodular poset will have one two-valued Jauch–Piron state that takes the
value 0 exactly on bounded sets.
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