THE SOLUTION TO A PROBLEM POSED BY P. KONÔPKA

Josef Tkadlec

Abstract

We present an example of an atomistic set-representable orthomodular poset L that do not fulfill the condition: "For any maximal set M of mutually noncompatible atoms there is a two-valued state s on L such that $\left.s\right|_{M}=1 "$. This answers a problem posed by P. Konôpka. We compare the above condition with another condition presented by P. Konôpka at this Conference: "Any maximal set of mutually noncompatible atoms intersects every block".

Example 1. Let $X=\{1,2,3,4,5,6\}$ and let $L=\{A \subset X ;|A|$ is even $\}$ with the ordering by inclusion and the orthocomplementation given by the settheoretic complementation in X. Then L is an atomistic orthomodular poset and $M=\{\{1,2\},\{2,3\},\{3,1\}\}$ is a (maximal) set of mutually noncompatible atoms in L such that there is no state s on L with $\left.s\right|_{M}=1$. Indeed, if s is a state on L with $\left.s\right|_{M}=1$ then $\left.s\right|_{P}=0$ for the finite partition $P=$ $\{\{3,6\},\{1,4\},\{2,5\}\}$ of unity in $L-$ a contradiction.

The following example is smaller but needs better knowledge of quantum logics.

Fig. 1

Fig. 2

Example 2. Let L be the orthomodular lattice given by the Greechie diagram on Fig. 1. Then L is atomistic and $M=\left\{a_{13}, a_{23}, a_{33}\right\}$ is a maximal set of mutually noncompatible atoms such that there is no state s on L with $\left.s\right|_{M}=1$. Indeed, if s is a state on L with $\left.s\right|_{M}=1$ then $\left.s\right|_{P}=0$ for the finite partition $P=\left\{a_{11}, a_{21}, a_{31}\right\}$ of unity in $L-$ a contradiction.

It remains to prove that L is set-representable. It suffices to find for any pair $a_{i j}, a_{k l}(i, j, k, l \in\{1,2,3\})$ of noncompatible atoms (i.e., $i \neq k$ and $\{j, l\} \neq$

[^0]$\{1\})$ a two-valued state s on L such that $s\left(a_{i j}\right)=s\left(a_{k l}\right)=1$. It is easy to see that such a state can be defined by (A denotes the set of atoms in L)
$$
s_{i j k l}^{-1}(1) \cap A=\left\{a_{i j}, a_{k l}, a_{m 3}\right\}, \quad m \neq i, k .
$$

It should be noted that the above examples do not fulfill also the following condition presented by P. Konôpka at this Conference (see also [1]): "Any maximal set of mutually noncompatible atoms intersects every block (= maximal Boolean subalgebra)".

In fact, this is a stronger condition in this context. If L is an atomistic orthomodular poset with a maximal set M of mutually noncompatible atoms that intersects every block in L, then the condition (A denotes the set of atoms in L)

$$
s^{-1}(1) \cap A=M
$$

defines a (completely additive) two-valued state s on L with $\left.s\right|_{M}=1$. The rest follows from the following example.

Example 3. Let L be the orthomodular lattice given by the Greechie diagram on Fig. 2-the set of atoms in L is $A=\left\{a_{i j} ; i \in I, j \in\{1,2,3\}\right\}$, where $I \supset\{1,2,3\}$ is an infinite index set. Then L is atomistic and $M=\left\{a_{i 3} ; i \in I\right\}$ is a maximal set of mutually noncompatible atoms in L that does not intersect the block containing $\left\{a_{i 1} ; i \in I\right\}$.

On the other hand, for any maximal set M of mutually noncompatible atoms in L there is a two-valued state s on L such that $\left.s\right|_{M}=1$. Indeed, if $M \cap\left\{a_{i 1} ; i \in I\right\} \neq \emptyset$ then M intersects every block of L and the state s is defined by $s^{-1}(1) \cap A=M$. If $M \cap\left\{a_{i 1} ; i \in I\right\}=\emptyset$, then $s^{-1}(1) \cap A=M$ again and it remains to define the state s on the block containing $\left\{a_{i 1} ; i \in I\right\}$. It can be done as follows:

$$
s\left(\bigvee_{i \in J} a_{i 1}\right)= \begin{cases}1, & \text { for } J \subset I \text { infinite } \\ 0, & \text { otherwise }\end{cases}
$$

Remark. If I and J in the above Example are uncountable sets, we obtain an example for σ-additive states (etc.).

REFERENCES

[1] KONÔPKA, P.: Generalization of quantum logics and sets with relative inverses by equational characterization for partial algebras, Tatra Mt. Math. Publ. 10 (1997), 183-197.

[^1]
[^0]: AMS Subject Classification (1991): 03G12, 81P10.
 Key words: atomistic set-representable orthomodular poset, compatibility, two-valued state.

[^1]: Department of Mathematics
 Faculty of Electrical Engineering
 Czech Technical University
 Technická 2 CZ-166 27 Praha
 CZECH REPUBLIC
 E-mail: tkadlec@math.feld.cvut.cz

