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Preface

The following notes are intended to accompany the series of lectures of the TACL Summer School at the Palacký
University in Olomouc in June 2017. They originated from the earlier notes for the undergraduate course at
the Faculty of Arts at the Charles University in Prague in 2011.

The curriculum of the Summer School has affected the choice of the material presented in these notes:
they contain the bare minimum of Category Theory needed for proving and understanding Beck’s monadicity
theorems.

I did my best to keep the text coherent and I hope that it may serve as a solid starting point for reader’s
further categorical adventures.

Jǐŕı Velebil
Department of mathematics
Faculty of Electrical Engineering
Czech Technical University in Prague
velebil@math.feld.cvut.cz

Recommended further reading

Although most of the material in this text is standard, I have also included some material that, up to my
knowledge, is written down only in research papers. These papers are referred to in the text, here I will only
comment on textbooks that deal with the standard material.

Gentle Category Theory If you want to start with Category Theory at a rather pleasant and slow pace, you
will find the book [4] by Michael Barr and Charles Wells invaluable. Monads form the climax of the book
and you will get there through many interesting applications, mainly in Computer Science.

Standard Category Theory The book [15] by Saunders Mac Lane is a standard reference for Category
Theory. Although it certainly covers the basics on monads, monads are not the book’s main topic.
However, Mac Lane’s exposition is brilliant and the book is a very catchy read. Be prepared to solve a
lot of exercises from standard algebra.

A lot on monads can be found in the book [19] by Horst Schubert. The English translation is quite
different from the German original [18] — the German version contains hardly anything interesting on
monads. Whereas the German version has been reprinted, the English translation is hopelesly sold out.
Ask in your local library, if they have it, do not hesitate and borrow it.

Another great standard textbook is [1] by Jǐŕı Adámek, Horst Herrlich and George Strecker. The authors
introduce quite a lot of interesting notions, all based on the notion of a category equipped with an
“underlying” functor. A big added value of the book is the plethora of examples and counterexamples. If
you do not know, for example, whether swell epis coincide with extremal epis, this is the book where to
find an answer. And, last but not least: the book is on the web for free!

Monads and Algebraic Theories A perhaps unsurpassed reference to monads and algebraic theories is a
very thorough monograph [16] by Ernest G. Manes that contains wonderful material (and a huge amount
of material, at that). I should mention that Manes’ book is written in reverse Polish notation and that it
may be harder to read if you are not fluent in this notation.

Not exactly a book, but if you happen to get a copy of an Århus preprint [22] by Gavin Wraith, you
will find out that many notions in categorical algebraic theories stem naturally from module theory. The
preprint is written in the language of algebraic theories, not monads, but still: it is a lovely read.
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The recent book [2] focuses on a different aspect of algebraic theories: Lawvere theories (that we do not
mention at all in this text). It is quite an advanced book, full of interesting facts and examples. Very up
to date.

Advanced Category Theory If you are fine with working out a lot of interesting and not so easy exercises,
go for another book [3] by Michael Barr and Charles Wells. Monads (called triples by the authors) are
just one topic in the book, but you will find advanced material on monads there. Great news: the book
is on the web for free.

I dare say that the beauty, strength and compactness of ideas in Max Kelly’s book [11] is hard to beat.
Although the book does not mention monads at all, it contains all the material one needs to start learning
about tricks and treats of enriched Category Theory. Again, the book is freely available (having been
typed by enthusiastic experts).

Monads can be used to define higher-dimensional categories. If you are curious what that could possibly
be, see Tom Leinster’s book [12]. Again, the book is freely available.

The good old sixties Finally, read the classics. There is a series of conference proceedings (Midwest Category
Seminar and other meetings) in Springer Lecture Notes in Mathematics, mainly from the 1960’s. In these
proceedings you will find the revolutionary papers and see the development of the ideas, most of the
material is solid gold. Do not worry about availability: Springer-Verlag prints these books on demand, or
they are available through Springerlink.

There exist many more great books on Category Theory. Apologies: I could have mentioned only a few. Keep
on looking around!
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Chapter 1

Preliminaries

We will need to use some very simple notions of category theory,
an esoteric subject noted for its difficulty and irrelevance.

Gregory Moore and Nathan Seiberg

In this chapter we gather the necessary definitions and results that we will need later in the text. This chapter
is, therefore, not a comprehensive introduction to Category Theory. We refer the reader to the books [15], [19],
or [1] for introductions at a slower pace.

1.1 Categories, functors, natural transformations

A category is, roughly speaking, a collection of objects and morphisms between the objects. The morphisms can
be composed and the law of composition satisfies axioms known from composition of set-theoretical mappings:
the composition is associative and there are identity morphisms serving as units for composition.

Before we give a formal definition of a category let us see few examples to get a feeling of what we will be
dealing with.

1.1.1 Example The following are examples of categories:

(1) The category Set of all sets and all mappings. Notation f : X −→ Y means that f is a set-theoretical
mapping from X to Y . Given f : X −→ Y and g : Y −→ Z, by g · f : X −→ Y we denote the usual
composition of functions. Observe that h · (g · f) = (h · g) · f holds, whenever the composition makes sense
and, if we denote by 1X : X −→ X the identity mapping, the equations 1Y · f = f = f · 1X hold.

(2) The category Mon of all monoids and all homomorphisms of monoids looks formally like Set in that respect
that f : X −→ Y is a particular set-theoretical mapping. Namely, f is the mapping from the carrier set
of the monoid X to the carrier set of the monoid Y and, moreover, f homomorphism of monoids, i.e., it
respects the binary operation and sends the neutral element of X to the neutral element of Y . Since the
composition of monoid homomorphisms as maps is a homomorphism of monoids and since the identity
mapping is a monoid homomorphism, the axioms h · (g · f) = (h · g) · f and 1Y · f = f = f · 1X hold,
whenever the composition makes sense.

(3) To see a little more frivolous example of a category than the above two, consider a monoid (X, i, ◦). We
will identify it with a category X in the following manner: our category will have just one object that we
denote by ∗. A morphism f : ∗ −→ ∗ is an element of the monoid (X, i, ◦). The composition makes sense
always and we put g · f = g ◦ f and 1∗ = i. Axioms of a monoid make sure that X is indeed a category:
the axioms h · (g · f) = (h · g) · f and 1Y · f = f = f · 1X hold.

The point of this example is that a morphism in a category need not be a mapping .

(4) A yet more frivoulous example is the category Formulas of all formulas of classical propositional logic as
objects and provability in the Hilbert-style axiomatics as morphisms. That is, f : X −→ Y means X ` Y ,
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1.1. Categories, functors, natural transformations 7

for formulas X and Y . The identity morphism 1X is X ` X and g · f : X −→ Z means that X ` Z,
whenever f : X −→ Y and g : Y −→ Z. Again, the axioms h · (g · f) = (h · g) · f and 1Y · f = f = f · 1X
hold.

(5) Of course, provability in Hilbert-style axiomatics was only a Schadenfreude from the side of the author.
The style of axiomatics had nothing to do with the properties of `, what mattered was that ` is a binary
relation on the set of all formulas, that is reflexive and transitive, i.e., that formulas and the provability
relation form a preorder . In fact, the category Formulas is an instance of the fact that every preorder can be
viewed as a category : objects are the elements of the preorder and f : X −→ Y means X ≤ Y . Reflexivity
of ≤ then takes care of the identity morphisms and transitivity of ≤ yields the notion of composition. The
axioms h · (g · f) = (h · g) · f and 1Y · f = f = f · 1X hold.

(6) And many others. . .

The above examples may have raised the feeling that, with a bit of effort, almost everything forms a category .
That statement is true to the same extent as the statement that almost everything forms a poset, or a monoid, or
a topological space, etc. Yes, the notion of a category is an extremely useful tool in some parts of mathematics
but it is definitely not a tool with which one could tackle any problem. This text is devoted to the part where
Category Theory can and does bring useful insights.

Our basic working tools will be categories, functors and natural transformations. Let us give first the defini-
tion of a category. We will give the definition in the form that will allow for massive and useful generalisations,
see Exercise 1.4.1.

1.1.2 Definition A category X consists of a collection of objects, that will be denoted by X, Y , Z, etc. For
each pair of objects X and Y there is given a hom-set X (X,Y ) of arrows from X to Y . Moreover, for each X,
Y , Z there are maps

unitX : 1 −→X (X,X) and compX,Y,Z : X (Y, Z)×X (X,Y ) −→X (X,Z)

where 1 denotes a one-element set. The above mappings are subject to axioms making the following diagrams

(X (Z,W )×X (Y,Z))×X (X,Y )
compY,Z,W×X (X,Y )

//

∼=
��

X (Y,W )×X (X,Y )

compX,Y,W

��

X (Z,W )× (X (Y,Z)×X (X,Y ))

X (Z,W )×compX,Y,Z

��

X (Z,W )×X (X,Z)
compX,Z,W

// X (X,W )

and

X (X,Y )× 1
X (X,Y )×unitX

//

∼=
**

X (X,Y )×X (X,X)

X,X,Y

��

X (X,Y )

X (Y, Y )×X (X,Y )

compX,Y,Y

��

1×X (X,Y )
unitY ×X (X,Y )
oo

∼=
tt

X (X,Y )

commutative.

1.1.3 Remark As said before, Definition 1.1.2 has the proper level of generality since it reveals what is essential
for being a category, see Exercise 1.4.1. We will use, however, the usual conventions, since we will want to argue
in analogous ways as we do with sets and mappings. Hence we will write

1X : X −→ X instead of unitX(∗), where ∗ is the unique element of 1

and

g · f : X −→ Z instead of compX,Y,Z(g, f).
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8 Chapter 1. Preliminaries

Commutativity of the diagrams in Definition 1.1.2 then translates to

h · (g · f) = (h · g) · f : X −→W , for every f : X −→ Y , g : Y −→ Z, h : Z −→W .

and

1Y · f = f = f · 1X : X −→ Y , for every f : X −→ Y

1.1.4 Remark We will not be very precise about set-theoretical foundations, see Section 1.3 below. Most of
the time we will work with legitimate categories, i.e., with categories X whose collection of objects form at
most a class and such that X (X,Y ) is a set , for any pair X, Y of objects.

Functors are “homomorphisms” of categories: they preserve the structure on the nose, i.e., a functor preserves
composition and identity morphisms. We give the definition of a functor again in such form that allows for a
massive generalisation, see Example 1.4.3. Let us see some examples of functors first.

1.1.5 Example The following are examples of functors:

(1) The underlying functor U : Mon −→ Set. For every monoid M = (M, i, ◦), UM = M , and Uf = f , for
every monoid homomorphism.

Clearly, the equalities U(g · f) = Ug · Uf and U1M = 1UM hold.

(2) LetH : (M, i, ◦) −→ (N, j, ∗) be a homomorphism of monoids. If both monoids are considered as categories
having one object, then H becomes a functor: the equalities H(g ◦ f) = Hg ∗Hf and Hi = j hold.

(3) Let X and Y be preorders, considered as categories. Any monotone map H : X −→ Y is a functor.

(4) Suppose CommRings denotes the category of commutative rings having a unit and ring homomorphisms.
Let n be a postive natural number. The functor Matn×n : CommRings −→ Mon assigns to each commu-
tative ring A the monoid Matn×n(A) of all n× n matrices over A.

To each ring homomorphism f : A −→ A′, the functor Matn×n assigns the monoid homomorphism
Matn×n(f) : Matn×n(A) −→ Matn×n(A′), that sends a matrix (aij) to the matrix (f(aij)). That
Matn×n(f) is a monoid homomorphism is ensured by the fact that f is a ring homomorphism.

Clearly, the identities Matn×n(1A) = 1Matn×n(A) and Matn×n(g · f) = Matn×n(g) ·Matn×n(f) hold.

(5) For every category A , we define the representable functor A (A0,−) : A −→ Set as follows:

(a) An object A gets sent to the set A (A0, A) of all morphisms from A0 to A.

(b) Given f : A −→ A′, the mapping A (A0, f) : A (A0, A) −→ A (A0, A
′) sends h : A0 −→ A to

f · h : A0 −→ A′.

Clearly: the equalities A (A0, 1A) = 1A (A0,A) and A (A0, g · f) = A (A0, g) ·A (A0, f) hold.

See Definition 1.2.7 for a slight generalisation.

1.1.6 Definition A functor U from the category A to the category X consists of an object-assignment A 7→
UA and an action on hom-sets

UA,A′ : A (A,A′) −→X (UA,UA′)

such that the diagrams

A (A,A)
UA,A

// X (UA,UA)

1
unitAA

cc

unitXUA

99
A (A′, A′′)×A (A,A′)

UA′,A′′×UA,A′
//

compA
A,A′,A′′

��

X (UA′, UA′′)×X (UA,UA′)

compX
UA,UA′,UA′′

��

A (A,A′′)
UA,A′′

// X (UA,UA′′)

commute.
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1.1. Categories, functors, natural transformations 9

1.1.7 Remark Definition 1.1.6 has the proper level of generality since it reveals what is essential for being a
functor, see Exercise 1.4.3. We will use, however, the usual conventions, since we will want to argue in analogous
ways as we do, e.g., with the underlying functor U : Mon −→ Set. Hence we will write, for f : A −→ A′, simply
Uf instead of UA,A′f . The diagrams of Definition 1.1.6 then translate to

U1A = 1UA, for every A in A ,

and

U(g · f) = Ug · Uf , for every f : A −→ A′, g : A′ −→ A′′.

Natural transformations are, alas, not “homomorphisms” between functors. But their name is well-chosen:
they do transform one functor into another. To explain what we mean by that, consider a commutative triangle

A′

g

��

A

f 99

h **
A′′

in a category A . Given two functors H : A −→X , K : A −→X , we obtain two commutative triangles

HA′

Hg

��

KA′

Kg

��

HA

Hf 77

Hh ++

KA

Kf 77

Kh ++
HA′′ KA′′

in the category X . The existence of a natural transformation α : H −→ K ensures that the triangle on the left
gets transformed to the triangle on the right in such a way that “nothing goes wrong”. This means that all the
faces of the diagram

HA′
αA′ //

Hg

��

KA′

Kg

��

HA

Hf 77

Hh ++

αA // KA

Kf 77

Kh ++
HA′′

αA′′
// KA′′

commute. The components of the natural transofrmations are the dotted arrows above.
Another useful slogan for a natural transformation is: a morphism αA : HA −→ KA is natural in A, if it

“does not really matter what A is”, i.e., if the morphism αA behaves “uniformly in A”.
We give the definition of a natural transformation again in such form that allows for an immediate massive

generalisation, see Example 1.4.4. Let us see examples first:

1.1.8 Example

(1) Suppose X and Y are preorders and H : X −→ Y , K : X −→ Y are monotone maps. Considered as
categories and functors, to give a natural transformation τ : H −→ K means that HX ≤ KX, for every
X.

(2) Let VecF be the category of all vector spaces and all linear maps over a fixed field F.

Denote by (−)∗∗ : VecF −→ VecF the functor that assigns to each vector space A its double dual space.
That is: X∗∗ is the vector space of linear forms on the vector space X∗ of the linear forms on X. Then
the mapping

evA : A −→ A∗∗, a 7→ (f 7→ f(a))

is a natural transformation from the identity functor on VecK to (−)∗∗.

Jiřı́ Velebil: cats & monads 9 22 June 2017, 14:56



10 Chapter 1. Preliminaries

For every linear map f : A −→ A′ the square

A
evA //

f

��

A∗∗

f∗∗

��

A′
evA′

// A′∗∗

commutes.

(3) Recall the example of the matrix-formation functor Matn×n : CommRings −→ Mon of Example 1.1.5.
Further, let |−| : CommRings −→ Mon be the functor that assigns the underlying multiplicative monoid
to every commutative ring with a unit.

Then det (the formation of a determinant) is a natural transformation from Matn×n to |−|.
The A-th component detA : Matn×n(A) −→ |A| is the monoid homomorphism, computing the determinant
detA(aij) of every matrix (aij).

The square

Matn×n(A)
detA //

Matn×n(f)

��

|A|

|f |
��

Matn×n(A′)
detA′

// |A′|

commutes for every ring homomorphism f : A −→ A′, since determinants of matrices are computed by
the same formula over any commutative ring with a unit.

1.1.9 Definition A natural transformation from H : A −→X to K : A −→X is a collection

αA : 1 −→X (HA,KA)

indexed by objects of A , such that the diagram

1×A (A,A′)
αA′×HA,A′

// X (HA′,KA′)×X (HA,HA′)
compHA,HA′,KA′

++

A (A,A′)

∼=
55

∼=
))

X (HA,KA′)

A (A,A′)× 1
KA,A′×αA

// X (KA,KA′)×X (HA,KA)

compHA,KA,KA′

33

commutes.
We also write α : H −→ K and we will say that the collection α = (αA) is natural in A.

1.1.10 Remark Again, we will simplify the notation of Definition 1.1.9. Since 1 has precisely one element, to
give αA : 1 −→ X (HA,KA) is to give a morphism αA : HA −→ KA in X , for each object A in A . The
diagram of the definition then translates to the requirement that the diagram

HA
αA //

Hf

��

KA

Kf

��

HA′
αA′
// KA′

commutes in X , for every f : A −→ A′ in A .

Natural transformations can be composed in two different ways.

22 June 2017, 14:56 10 Jiřı́ Velebil: cats & monads



1.1. Categories, functors, natural transformations 11

(1) The “obvious” way is to compose the morphism σA : HA −→ KA with the morphism τA : KA −→ LA
to obtain τA ·σA : HA −→ LA that is obviously the A-th component of a natural transformation denoted
by τ · σ : H −→ L. Namely, the diagram

HA
σA //

Hf

��

KA
τA //

Kf

��

LA

Lf

��

��

(τ ·σ)A

HA′
σA′
// KA′

τA′
// LA′OO

(τ ·σ)A′

commutes in X , for every f : A −→ A′.

One usually depicts the above situation by the diagram

A

H //

↓σ
K //

↓τ

L
//

X = A

H //

↓τ ·σ

L
//
X

and this is why this type of composition is often called vertical .

(2) Perhaps a less obvious way is to compose σ : H −→ H ′ “in parallel” with τ : K −→ K ′, where H,H ′ :
B −→X and K,K ′ : A −→ B. This results in the natural transformation, denoted by

σ ∗ τ : HK −→ H ′K ′

having as the A-th component the diagonal of the commutative square

HKA
σKA //

HτA
��

H ′KA

H′τA
��

HK ′A
σK′A

// H ′K ′A

expressing naturality of σ. That σ ∗ τ is indeed natural is witnessed, for every f : A −→ A′, by the square

HKA
σKA //

HKf

��

H ′KA
H′τA //

H′Kf
��

H ′K ′A

H′K′f
��

��

(σ∗τ)A

HKA′
σKA′

// H ′KA′
H′τA′

// H ′K ′A′OO

(σ∗τ)A′

where both squares commute by naturality.

One usually depicts the above situation by the diagram

A

K //

↓τ

K′
//
B

H //

↓σ

H′
//
X = A

HK //

↓σ∗τ

HK′
//
X

and this is why this type of composition is often called horizontal .
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12 Chapter 1. Preliminaries

The above two types of compositions of natural transformations are easily seen to give unambigous meaning
to the picture

•

//

↓
//

↓
//

•

//

↓
//

↓
//

•

where • stands for various categories. Thus all the composites one can meet have unambigous meaning. This
result is called the Godement calculus for natural transformations, since it was introduced in [7].

Denote by ιH the identity natural transformation on H (with components ιHA = 1HA : HA −→ HA). Then
we write

Hτ instead of ιH ∗ τ ,

τH instead of τ ∗ ιH ,

to relax the notation.

1.2 Some useful basic notions and results

A very useful source of various examples of the notions in this section is the book [1].

Special properties of morphisms

Finding a proper generalisation of being “injective” and “surjective” is not an easy task. We will see later that,
in a general category, there may be several candidates for notions that a morphism is “injective” or “surjective”.
We introduce the “weakest” and “strongest” notions:

1.2.1 Definition A morphism m : X −→ Y is called

(1) a monomorphism (also mono), if u = v for any pair of morphisms satisfying m · u = m · v.

(2) a split monomorphism (also split mono, if there exists a splitting e : Y −→ X such that e ·m = 1X holds.

1.2.2 Definition A morphism e : X −→ Y is called

(1) a epimorphism (also epi), if u = v for any pair of morphisms satisfying u · e = v · e.

(2) a split epimorphism (also split epi , if there exists a splitting m : Y −→ X such that e ·m = 1Y holds.

1.2.3 Definition A morphism f : X −→ Y is called an isomorphism (also iso), if there exists a (necessarily
unique) g such that g · f = 1X and f · g = 1Y .

1.2.4 Example

(1) In the category Set: mono=injective map, epi=surjective map and iso=bijective map. Every epi is split
epi (assuming the Axiom of Choice). A mono splits iff its domain is a nonempty set.

(2) In Top (topological spaces and continuous maps): mono=injective continuous maps, epi=surjective con-
tinuous map, where the topology on the codomain is final, iso=homeomorphism.

Mathematical notions are used to perform calculations. Sometimes, it is useful to use various “tricks” that
help speeding up the calculations. We will emphasise such “tricks” and we will often use them. Here comes the
first example.

1.2.5 Categorical Trick To prove that a square

A
f
//

g

��

B

h
��

C
k
// D
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1.2. Some useful basic notions and results 13

commutes, it suffices to precompose both legs of the above diagram with an epimorphism and prove that both
composites are equal.

Indeed, if the diagram

Z

e

��

A
f
//

g

��

B

h
��

C
k
// D

commutes, where e is an epi, then the equality (h ·f) · e = (k ·g) · e holds. Since e is epi, we can infer the desired
equality h · f = k · g.

Analogously, one can postcompose both legs of the above square with a mono. If both composites are equal,
then the square commutes.

The following easy result give the basic relationship between the mono and epi notions:

1.2.6 Proposition The following is true in any category.

(1) Every iso is split mono. Every split mono is mono.

(2) Every iso is split epi. Every split epi is epi.

(3) A morphism is an iso iff it is both split mono and epi iff it is both mono and split epi.

The above notions will also be used for natural transformations. In fact, it is useful to introduce an (in
general, illegitimate) category [A ,X ] having functors A −→ X as objects and natural transformations as
morphisms. Hence, for example, a natural transformation α : H −→ K is called an epi-transformation, if it is
epi in [A ,X ]. An iso in [A ,X ] is called a natural isomorphism.

Special functors and special properties of functors

In Category Theory it is customary to work with notions up to isomorphism, since isomorphic objects are
regarded as “abstractly the same”. The first example of this approach is the definition of a representable
functor.

1.2.7 Definition A functor H : A −→ Set such that H is naturally isomorphic to A (A0,−) : A −→ Set is
called a representable functor . The object A0 is called the representing object .

We will frequently use special properties of functors that we introduce now.

1.2.8 Definition A functor U : A −→X is called

(1) faithful , if the action UA,A′ : A (A,A′) −→X (UA,UA′) is an injective map, for every A and A′.

(2) full , if the action UA,A′ : A (A,A′) −→X (UA,UA′) is an surjective map, for every A and A′.

(3) fully faithful (also f.f.), if it is both full and faithful.

(4) essentially surjective on objects (also e.s.o.), if for every X in X there is a A in A such that UA is
isomorphic to X.

(5) bijective on objects (also b.o.), if the object assignment A 7→ UA is a bijection.
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14 Chapter 1. Preliminaries

Yoneda Lemma

1.2.9 Lemma (Yoneda Lemma) Suppose that H : X −→ Set is a functor and let X be an object of X .
Then to give a natural transformation τ : X (X,−) −→ H is to give an element xτ ∈ HX.

Proof. Suppose τ is given. Define xτ = τX(1X):

X (X,X)
τX // HX

1X
� // xτ

Conversely, if x ∈ HX, then we can define, for every Z in X , a mapping τxZ : X (X,Z) −→ HZ sending
f : X −→ Z to Hf(x):

X (X,Z)
τxZ // HZ

f � // Hfx

We need to verify that τxZ is natural in Z. To that end, consider g : Z −→ Z ′ and the commutative square

f � //
_

��

Hfx_

��

X (X,Z)
τxZ //

X (X,g)
��

HZ

Hg
��

X (X,Z ′)
τx
Z′

// HZ ′

g · f � //H(g · f)x = Hg(Hf(x))

It remains to be proved that x 7→ τx and τ 7→ xτ are mutually inverse.

(1) Start with τ . We want to prove τZ = (τxτ )Z , for every Z.

For f : X −→ Z we have (τxτ )Z(f) = Hf(xτ ) = Hf(τX(1X)). Since τ is natural, we can compute
further: Hf(τX(1X)) = τZX (X, f)(1X) = τZ(f).

(2) Start with x. We want to prove xτx = x.

We have xτx = τxX(1X) = H1X(x) = x.

�

Yoneda Lemma is usually stated as an isomorphism

[X ,Set](X (X,−), H) ∼= HX

of sets, where [X ,Set] is the illegitimate category having functors from X to Set as objects and natural
transformations between them.

In fact, Yoneda Lemma can be proved to be a natural isomorphism of two functors

N : X × [X ,Set] −→ Set ev : X × [X ,Set] −→ Set

with object assignments

N : (X,H) 7→ [X ,Set](X (X,−), H) and ev : (X,H) 7→ HX

It is worthwhile to work out the above in detail.
See Section 1.3 for explaining why and how we will work with objects like [X ,Set] and observe that the

illegitimate form allows us to prove that there is an isomorphism

[X ,Set](X (X,−),X (X ′,−)) ∼= X (X ′, X)

natural in both X and X ′.
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1.3. Set-theoretical comments 15

1.3 Set-theoretical comments

Set-theoretical comments seem to be almost inevitable when writing a longer text on Category Theory. We will
use Set Theory as a useful tool and not as our master. That is:

We will work with objects that may not exist within ordinary Set Theory but we will do it very cautiously .

Hence, when feeling that something fishy is going on, the reader is advised to analyse carefully the set-theoretical
status of the object in question. She will usually find that the status of the object is rather harmless and it can
be unravelled to a long complicated statement that is hard to remember.

1.4 Exercises

1.4.1 Exercise (Enriched categories) Read Definition 1.1.2 with glasses forcing you to replace the word
‘set’ by the word ‘poset’ and the word ‘map’ by ‘monotone map’ everywhere. The definition still makes sense
and you have ended up with the definition of what it means to give a category X enriched in the category Pos
of posets and monotone maps.

Try to convince yourself that the definition makes sense if you replace the word ‘set’ by the word ‘gadget’
and the word ‘map’ with the word ‘morphism of gadgets’. One should end up with the notion of a category
X enriched in the category Gadgets of all gadgets and their morphisms. The only trouble may be to give a
meaning to symbols 1 and ×.

Looking closer at Definition 1.1.2, convince yourself that the only properties you need from × and 1 that
they make Set into a “commutative monoid”. More precisely:

(1) The assignment (X,Y ) 7→ X × Y is a functor of two variables that is “nearly associative”, i.e., there is,
for all X, Y , Z, a bijection X × (Y × Z) ∼= (X × Y )× Z.

(2) The one-element set 1 is “nearly a two-sided unit” for ×, i.e., there is, for every X, a bijection 1 ×X ∼=
X ∼= X × 1.

(3) The assignment (X,Y ) 7→ X × Y is “nearly commutative”, i.e., there is, for all X and Y , a bijection
X × Y ∼= Y ×X.

In high-level mode of speech one says that (Set, 1,×) is a symmetric monoidal category .
In reality, slightly more has to be required: the above bijections should interact nicely with each other.

Apart from this technicality that we do not want to discuss here, the above is all you need for starting enriched
Category Theory. See the excellent book [11] if you are interested in this line of thoughts.

1.4.2 Exercise (The opposite of a category) Prove that given a category X , the following data yield a
category, denoted by X op and called the opposite of X :

(1) The objects of X op are the same as the objects of X .

(2) Morphisms from X to X ′ in X op are the morphisms from X ′ to X in X .

(3) The composition and identity morphisms in X are given by those of X .

1.4.3 Exercise (Enriched functors) Reading Definition 1.1.6 with ‘map’ replaced by ‘monotone maps’ ev-
erywhere, you end up with the notion of an enriched functor (between the categories enriched in Pos). Of course,
the most general notions is that of an enriched functor between categoires enriched in a symmetric monoidal
category. See [11].

1.4.4 Exercise (Enriched natural transformations) Reading Definition 1.1.9 with ‘map’ replaced by ‘mono-
tone maps’ everywhere, you end up with the notion of an enriched natural transformation (between the functors
enriched in Pos). See [11] for the full generality.

1.4.5 Exercise (The category of elements of a functor) Suppose H : A −→ Set is a functor. Construct
the category elts(H) of elements of H as follows:

Jiřı́ Velebil: cats & monads 15 22 June 2017, 14:56



16 Chapter 1. Preliminaries

(1) Objects are pairs (x,A), where x ∈ HA.

(2) A morphism from (x,A) to (x′, A′) is f : A −→ A′ such that Hf(x) = x′.

(3) Composition and identity morphisms are defined as in A .

Observe that there is a functor ∂H : elts(H) −→ A with the object assignment (x,A) 7→ A. The action of ∂H
on hom-sets is identity: ∂H : f 7→ f .

1.4.6 Exercise (Split epis are exactly absolute epis) Prove, for e : X −→ Y in X , that the following
conditions are equivalent:

(1) e is a split epi.

(2) He is epi, for every functor H : X −→ K . That is: e is an absolute epi .

(3) X (Y, e) : X (Y,X) −→X (Y, Y ) is epi in Set.

1.4.7 Exercise (A morphism is (∗) if it is representably so) In some literature you may find the follow-
ing expression

A morphism f : X −→ X ′ is (∗) if it is representably so.

where (∗) is some property of morphisms. By this, the authors mean: the mapping X (X0, f) : X (X0, X) −→
X (X0, X

′) has the property (∗), for every X0 in X .
Prove the following:

(1) f : X −→ X ′ is an isomorphism iff it is representably so.

(2) m : X −→ X ′ is a monomorphism iff it is representably so.

Being “representably so” often indicates that we are on the right track when defining some notion in an abstract
category. Hence the above indicates that “mono” is a proper generalisation of being injective. We could have
introduced the word “injective” instead of “mono” in an arbitrary category and, by the above, we could have
written

m : X −→ X ′ is injective iff it is representably so.

We will not speak about “injective” morphisms, however. We will stick to the word “monomorphism”.
Show that such an intuition fails badly for the notion of being surjective, i.e., describe what “representably

surjective” should mean in a general category.

1.4.8 Exercise (coYoneda Lemma) Yoneda Lemma 1.2.9 speaks about natural transformations from a rep-
resentable functor X (X,−) to any functor H. The following result (dubbed coYoneda Lemma in [15]) speaks
about natural transformations in the opposite direction. Prove that to give

a natural transformation τ : H −→X (X,−)

is to give

a natural transformation from constX to ∂H , where constX : elts(H) −→X is the constant-at-X functor
and ∂H : elts(H) −→X is the canonical projection from the category of elements of H (see Exercise 1.4.5).
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Chapter 2

Adjunctions

Adjoint functors arise everywhere.

Saunders Mac Lane

If there would have to be chosen just one fundamental concept of category theory, the author of these notes
would vote for an adjunction. Pairs of adjoint functors can be literally found almost everywhere in category
theory. Since we are interested in applications of the theory in universal algebra, we will stress the following
facets of adjunctions:

(1) Adjunctions describe free objects.

(2) Adjunctions give rise to theories of terms.

(3) Adjunctions of special kind characterise equationally defined objects.

Of course, in passing, we will discover other facets of an adjunction (for example, one can define limits and
colimits using adjunctions).

2.1 Free and cofree objects

2.1.1 Definition Suppose U : A −→ X is given. We say that an object F0X, together with an arrow
ηX : X −→ UF0X, is a free object on X (w.r.t. U), provided that the following property is satisfied:

For every f : X −→ UA there is a unique f ] : F0X −→ A such that the triangle

UF0X
Uf]
// UA

X

ηX

OO

f

;;

(2.1)

commutes.

The above definition captures exactly the notion of a free object, known from classical universal algebra.
The free object on the “object X of generators” is F0X and ηX : X −→ UF0X is the “insertion of generators”
into the free object. Let us stress, however, that we do not require ηX to be an “embedding” in any sense.

2.1.2 Example Denote by U : Mon −→ Set the underlying functor from the category Mon of monoids and
their homomorphisms to the category Set of sets and mappings. We show that a free object exists for every set
X.

In fact, this is well-known: denote by F0X the monoid (X∗, e, ·), where X∗ is the set of all finite words in
the alphabet X, e is the empty word and · denotes concatenation. Clearly, UF0X = X∗. Define ηX : X −→ X∗

as the map sending x ∈ X to x, considered as the word of length one.
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18 Chapter 2. Adjunctions

The universal property of (F0X, ηX) then says that for every monoid (M, i, ◦) and every map f : X −→M ,
there is a unique homomorphism of monoids f ] : (X∗, e, ·) −→ (M, i, ◦) such that f ](x) = f(x), for every x ∈ X.

The definition of f ] is clear:

f ](e) = i, f ](x1 . . . xn) = f(x1) ◦ . . . ◦ f(xn)

It is a monoid homomorphism by definition and it is clearly unique with the property f ](x) = f(x), for every
x ∈ X.

The dual of Definition 2.1.1 gives the notion of a cofree object . Let us spell it in detail.

2.1.3 Definition We say that G0X in A , together with a morphism γX : UG0X −→ X, is a cofree object on
X w.r.t. U : A −→X , provided that the following couniversal property is satisfied:

For every f : UA −→ X there is a unique f [ : A −→ G0X such that the triangle

UA
Uf[
//

f
$$

UG0X

γX

��

X

commutes.

As we will see, cofree objects abound. In fact, for example, the underlying set M of any monoid (M, i,m)
is a cofree object on (M, i,m) w.r.t. F : Set −→ Mon. We will be primarily interested in free objects, though,
since they naturally appear in universal-algebraic reasoning.

Functors U having both free and cofree objects are rare in universal algebra but they appear quite naturally
in topology, see Exercise 2.6.7. We describe now a functor having both free and cofree objects and having a
universal-algebraic flavour.

2.1.4 Example In this example, M = (M, i, ◦) denotes a fixed monoid. We define a category M-Acts of M-
actions and M-equivariant maps and prove that it has both free objects and cofree objects w.r.t. the obvious
underlying functor U : M-Acts −→ Set.

An action of M on a set X is a mapping @ : M ×X −→ X, satisfying the equations

i@x = x, (m1 ◦m2)@x = m1@(m2@x)

An M-equivariant map from (X,@) to X ′,@′) is a map f : X −→ X ′ such that the equation

f(m@x) = m@′f(x)

is satisfied.
It is clear that M-actions and M-equivariant maps organise themselves into a category M-Acts.

(1) A free object on X is the action

fX : M × (M ×X) −→M ×X, (m1,m2, x) 7→ (m1 ◦m2, x)

Then the mapping ηX : X −→ M × X, sending x to (i, x) is easily seen to satisfy the desired universal
property.

(2) A cofree object on X w.r.t. U is the action

cX : M × [M,X] −→ [M,X], cX(m,h) : m′ 7→ h(m′ ◦m)

The mapping γX : [M,X] −→ X that evaluates at i is the couniversal mapping.

Indeed, suppose (X ′,@′) is any action and f : X ′ −→ X is a map. Define f [ : X ′ −→ [M,X] by putting
f [(x′) : m 7→ f(m@′x′).

Then γX · f [ = f holds by definition and f [ is an equivariant map:

f [(m@′x′)(m′) = f((m′ ◦m)@′x′) = cX(m, f [(x′))(m′)

It is easy to verify that f [ is the unique map with the above two properties.
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2.1.5 Proposition Suppose U : A −→ X is given and suppose a free object (F0X, ηX) exists for every X.
Then the assignment X 7→ F0X extends to a functor F : X −→ A and the collection of ηX ’s forms a natural
trasformation η : IdX −→ UF .

Proof. To define F : X −→ A , we put FX = F0X on objects. On morphisms, we define Ff : FX −→ FX ′

as (ηX′ · f)]. By the definition, the square

X
ηX //

f

��

UFX

UFf

��

X ′
ηX′
// UFX ′

commutes. The square would prove that the collection of ηX ’s constitutes a natural transformation, had we
known that F we had defined is indeed a functor. But this is the case:

(1) F preserves identities. Since both squares

X
ηX //

1X
��

UFX

UF1X
��

X
ηX
// UFX

X
ηX //

1X
��

UFX

U1FX
��

X
ηX
// UFX

commute (the one on the left hand side by the definition of F1X), we proved that F1X = 1FX .

(2) F preserves composition. Consider the diagrams

X
ηX //

f

��

UFX

UFf

��

X ′
ηX′ //

g

��

UFX ′

UFg

��

X ′′
ηX′′ // UFX ′′

X
ηX //

g·f
��

UFX

U(FU(g·f)
��

X ′′
ηX′′
// UFX ′′

The diagram on the left commutes by the definition of Ff and Fg, the diagram on the right commutes
by the definition of F (g · f). Thus Fg · Ff = F (g · f) holds.

�

2.2 Adjunctions

2.2.1 Definition Suppose U : A −→ X and F : X −→ A are functors. We say that U is a right adjoint of
F (and F is a left adjoint of U), provided there is a bijection

bX,A : A (FX,A) −→X (X,UA)

of hom-sets, natural in X and A. We denote the adjunction by F a U .

2.2.2 Remark It is very useful to introduce some more notation and terminology concerning Definition 2.2.1.

(1) Given h : FX −→ A we denote the value bX,A(h) by h[ : X −→ UA and call it a transpose of h.
Analogously, for f : X −→ UA we denote the value b−1X,A(f) by f ] : FX −→ A and call it a transpose of

f . As we will see later, the notation f ] is in accordance with Definition 2.1.1.
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20 Chapter 2. Adjunctions

(2) Instead of writing the bijection bX,A “linearly”, we will often use the “fraction” notation

FX
h // A

X
f
// UA

F a U

to mean that bX,A(h) = f (or, equivalently, b−1X,A(f) = h). We will also omit writing F a U frequently.

(3) Naturality of bX,A in X can be spelt, using “fractions”, as follows:

FX ′
Ff ′
// FX

f]
// A

X ′
f ′
// X

f
// UA

meaning (f · f ′)] = f ] · Ff ′ holds, for any f ′ : X ′ −→ X.

(4) Naturality of bX,A in A can be spelt, using “fractions”, as follows:

FX
h // A

h′ // A′

X
h[ // UA

Uh′ // UA′

meaning (h′ · h)[ = Uh′ · h[ holds, for any h′ : A −→ A′.

The notation borrowed from music should help to remember the transposes: in an adjunction F a U : A −→X ,
the category A should be thought of as “living upstairs of X ”. Then in

FX
f]
// A

X
f
// UX

the passage f 7→ f ] is the “transposition upwards”, whereas in

FX
h // A

X
h[ // UX

the passage h 7→ h[ is the “transposition downwards”.

2.2.3 Categorical Trick When we want to prove equality h = k : FX −→ A in A , it suffices to prove the
equality h[ = k[ : X −→ UA in X . Analogously, when we want to prove equality f = g : X −→ UA in X , it
suffices to prove the equality f ] = g] : FX −→ A in A .

2.2.4 Theorem Suppose U : A −→X , F : X −→ A are given. Then the following are equivalent:

(1) There is a bijection bX,A : A (FX,A) −→X (X,UA) of hom-sets, natural in X and A.

(2) There are natural transformations η : IdX −→ UF (called the unit) and ε : FU −→ IdA (called the
counit) such that the diagrams (called the triangle identities)

U
ηU
// UFU

Uε
��

FUF

εF
��

F
Fη
oo

U F

(2.2)

commute.
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Proof. (1) implies (2): We define ηX and εA, using the bijections bX,A, as follows:

FX
1FX // FX

X
ηX // UFX

FUA
εA // A

UA
1UA // UA

Observe that

FX
1FX // FX

Ff
// FX ′

X
ηX // UFX

UFf
// UFX ′

FX
Ff
// FX ′

1FX′ // FX ′

X
f
// X ′

ηX′ // UFX ′

prove that ηX ’s form a natural transformation. That the collection of εA’s forms a natural transformation is
proved in a similar way.

To verify the commutativity of the triangle on the left of (2.2), consider

FUA
1FUA // FUA

εA // A

UA
ηUA // UFUA

UεA // UA

FUA
εA // A

UA
1UA // UA

The commutativity of the triangle on the right of (2.2) is verified in a similar manner.

(2) implies (1): Given h : FX −→ A, define bX,A(h) : X −→ UA to be the composite

X
ηX // UFX

Uh // UA

We prove that bX,A is a bijection.

(i) bX,A is an injection. Suppose

X
ηX // UFX

Uh1 // UA = X
ηX // UFX

Uh2 // UA

Then (apply F to both sides)

FX
FηX // FUFX

FUh1 // FUA = FX
FηX // FUFX

FUh2 // FUA

and (postcompose with εA)

FX
FηX // FUFX

FUh1 // FUA
εA // A = FX

FηX // FUFX
FUh2 // FUA

εA // A

Using naturality of ε, we obtain

FX
FηX // FUFX

εFX // FX
h1 // A = FX

FηX // FUFX
εFX // FX

h2 // A

and finally, by the triangle on the right of (2.2), we obtain

FX
h1 // A = FX

h2 // A

as desired.

(ii) bX,A is a surjection. Given f : X −→ UA, define h : FX −→ A as the composite

FX
Ff
// FUA

εA // A

We prove bX,A(h) = f . To that end, recall that bX,A(h) is the composite

X
ηX // UFX

UFf
// UFUA

UεA // UA

or, equivalently, the composite

X
f
// UA

ηUA // UFUA
UεA // UA

since η is natural. The last composite is equal to f due to the triangle on the left of (2.2).
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So far we have proved that, for fixed X and A, there is a bijection

FX
h // A

X
ηX // UFX

Uh // UA

FX
Ff
// FUA

εA // A

X
f
// UA

(2.3)

We prove naturality in X. This follows immediately from the “fraction”

FX ′
Ff ′
// FX

Ff
// FUA

εA // A

X ′
f ′
// X

f
// UA

Naturality in A is proved analogously. �

2.2.5 Remark (Left adjoints are essentially unique) Suppose F1 a U and F2 a U hold. Then there is a
unique natural isomorphism τ : F1 −→ F2.

This is immediate from the Yoneda Lemma: F1 a U means that A (F1−, A) ∼= X (−, UA) holds, and F2 a U
means that A (F2−, A) ∼= X (−, UA) holds. Therefore we have an isomorphism A (F1X,A) ∼= A (F2X,A),
natural in X and A. This means that the objects F1X and F2X are isomorphic (here we use Yoneda Lemma)
and the isomorphism is natural in X.

2.2.6 Theorem (Universal-algebraic Adjoint Functor Theorem) For a functor U : A −→ X , the fol-
lowing are equivalent:

(1) U has a left adjoint.

(2) There exists, for every X, a free object on X w.r.t. U .

Proof. (1) implies (2). Denote the left adjoint of U by F and and by η the unit of F a U . Then ηX : X −→
UFX exhibits FX as a free object on X.

(2) implies (1). By Proposition 2.1.5 we know that there is a functor F : X −→ A and a natural transformation
η : IdX −→ UF such that ηX : X −→ UFX exhibits FX as a free object on X. Therefore the assignment

(f : X −→ UA) 7→ (f ] : FX −→ A)

provides us with a bijection X (X,UA) −→ A (FX,A). Naturality of this bijection in X follows immediately
from the universal property of free objects.

The inverse of the above bijection is given by

(h : FX −→ A) 7→ (Uh · ηX : X −→ UA)

from which naturality in A follows immediately. �

2.3 Properties of adjoints in terms of the unit and the counit

The “fractions” (2.3) state that the diagrams

X (X ′, X)
FX′,X

// A (FX ′, FX)
bX′,FX

// X (X ′, UFX)
OO

X (X′,ηX)

and

A (A,A′)
UA,A′

// X (UA,UA′)
b−1

UA,A′
// A (FUA,A′)

OO

A (εA,A
′)

commute. Therefore the two above diagrams yield the following two propositions stating properties of U in
terms of the counit and properties of F in terms of the unit.
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2.3.1 Proposition Suppose F a U : A −→X . Let ε denote the counit of F a U . Then:

(1) The functor U is faithful iff every εA is an epimorphism.

(2) The functor U is full iff every εA is a split monomorphism.

(3) The functor U is fully faithful iff every εA is an isomorphism.

Proof. (1) U is faithful iff every UA,A′ is an injective map. The latter is equivalent to the map

A (εA, A
′) : (h : A −→ A′) 7→ (h · εA : FUA −→ A′)

being injective, for every A and A′. But this is to say that every εA is an epimorphism.

(2) U is full iff every UA,A′ is a surjective map. The latter is equivalent to the map

A (εA, A
′) : (h : A −→ A′) 7→ (h · εA : FUA −→ A′)

being surjective, for every A and A′. In particular, the map A (εA, FUA) : A (A,FUA) −→ A (FUA,FUA) is
surjective. Therefore there exists e : A −→ FUA such that e · εA = 1FUA and we have proved that εA is split
mono.

Conversely: if εA is split mono, there exists e : A −→ FUA such that e · εA = 1FUA. Then, for every A′,
the map

(h : A −→ A′) 7→ (h · εA : FUA −→ A′)

is surjective: given k : FUA −→ A′, define h = k · e : A −→ A′. Then

h · εA = k · e · εA = k

and the mapping A (εA, A
′) is surjective.

(3) By the above, U is fully faithful iff every εA is both epi and split mono. The latter is equivalent to εA being
an isomorphism. �

2.3.2 Proposition Suppose F a U : A −→X . Let η denote the unit of F a U . Then:

(1) The functor F is faithful iff every ηX is a monomorphism.

(2) The functor F is full iff every ηX is a split epimorphism.

(3) The functor F is fully faithful iff every ηX is an isomorphism.

Proof. This is analogous to the proof of Proposition 2.3.1. �

2.4 Equivalences of categories

2.4.1 Definition Suppose U : A −→X and F : X −→ A are functors and α : IdX −→ UF and β : FU −→
IdA are natural transformations. The quadruple (U,F, α, β) is called

(1) An isomorphism of categories, if both α and β are identities.

(2) An equivalence of categories, if both α and β are isomorphisms.

2.4.2 Remark As we will see later, an isomorphism of categories is too strong a requirement of “being ab-
stractly the same”. As we will see, in practice all one really needs when speaking about two categories “being
abstractly the same” is the notion of an equivalence of categories.

Of course, an adjunction F a U such that both the unit η and the counit ε are isomorphisms, is an equivalence
of categories. Such an adjunction is called an adjoint equivalence. The next result proves that there are no
other equivalences of categories.
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24 Chapter 2. Adjunctions

2.4.3 Proposition For U : A −→X , the following are equivalent:

(1) There exist F , α and β such that (U,F, α, β) is an equivalence of categories.

(2) There exists F such that F a U is an adjoint equivalence.

(3) The functor U is fully faithful and e.s.o.

Proof. (2) clearly implies (1). To prove that (3) implies (2), we are going to construct a free object on every X.
Since U is e.s.o., there is an object F0X in A and an isomorphism ηX : X −→ UF0X. Consider f : X −→ UA
and define f ] : FX −→ A as the unique morphism with Uf ] = f · (ηX)−1 (here we have used that U is fully
faithful). Hence the assignment X 7→ F0X can be extended to a functor such that F a U wiht η as a unit.
Since U is fully faithful, the counit is an isomorphism by Proposition 2.3.1. We have proved that U is part of
an adjoint equivalence.

It remains to prove that (1) implies (3): We prove first that both U and F are faithful:

(i) U is faithful. Consider the diagram

FUA
βA //

FUh
��

A

h
��

FUA′
βA′
// A′

Hence h = βA′ · FUh · β−1A . The last equality proves that U is faithful: if Uh1 = Uh2, then

h1 = βA′ · FUh1 · β−1A = βA′ · FUh2 · β−1A = h2

(ii) F is faithful. Consider the diagram

X
αX //

f

��

UFX

UFf

��

X ′
αX′
// UFX ′

Hence f = α−1X′ · UFf · αX . The last equality proves that F is faithful: if Ff1 = Ff2, then

f1 = α−1X′ · UFf1 · αX = α−1X′ · UFf2 · αX = f2

To prove that U is full, suppose f : UA −→ UA′ is given and define h as βA′ · Ff · β−1A . Then both squares

FUA
βA //

Ff

��

A

h
��

FUA′
βA′
// A′

FUA
βA //

FUh
��

A

h
��

FUA′
βA′
// A′

commute and this proves that Ff = FUh. Using faithfulness of F , the equality f = Uh follows.

That U is e.s.o. is trivial, use the isomorphism αX : X −→ UFX. �

2.4.4 Remark The proof of Proposition 2.4.3 can be easily modified to obtain a useful characterisation of
isomorphisms of categories. Namely, U : A −→ X is an isomorphism of categories iff it is fully faithful and
bijective on objects.
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2.5 String diagrams for adjunctions

In various parts of category theory, a different notation for expressing commutative diagrams is used. The
so-called string diagrams allow us to do computations with functors and natural transformations in a rather
elegant way. Moreover, some results gain a very descriptive “graphic” meaning.

We will not introduce string diagrams formally, we just give examples. A string diagram consists of areas,
boxes and wires. An area represents a category, a box represents a natural transfomation, and a wire represents
a functor.

For example, a functor U : A −→X is represented as follows:

A X

U

The string diagrams concerning functors are to be read from left to right and they can be composed together
by horizontal pasting, hence

A X A

U F

represents the composite F · U : A −→ A .

The wire labelled by the identity functor as, e.g., IdX may be omitted from any picture. Hence

A

represents IdA .

Adding boxes to wires allows us to represent natural transformation. For example

A X

τ

U1

U2

represents a natural transformation τ : U1 −→ U2.

Pasting the string diagrams vertically corresponds to the vertical composition of natural transformations:
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26 Chapter 2. Adjunctions

the diagram

A X

τ1

τ2

U1

U2

U3

represents the composite of τ1 : U1 −→ U2 and τ2 : U2 −→ U3.
Analogously, pasting the string diagrams horizontally corresponds to the horizontal composition of natural

transformations.
Therefore η : IdX −→ UF is represented by

X A

η

F U

or even by

F U

Analogously, ε : FU −→ IdA is represented by

U F

The triangle identities (2.2) then take the form of “yanking” axioms

U F
U

= U
FU

F
= F

As an example of usefulness of string diagrams, we prove the following result.
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2.5.1 Proposition (Adjunctions compose) Suppose F1 a U1 : A −→ B and F2 a U2 : B −→ C hold.
Then F1F2 a U2U1 : A −→ C holds.

Proof. Define a natural transformation IdC −→ U2U1F1F2 by the diagram

F1 U1

F2 U2

and a natural transformation F1F2U2U1 −→ IdA by the diagram

U2 F2

U1 F1

The “yanking” axioms for the above natural transformations are clearly satisfied. �

2.6 Exercises

2.6.1 Exercise (Adjunctions between preorders) Let A and X be preorders, considered as categories.
Prove that an adjunction F a U : A −→X amounts to

FX ≤ A
X ≤ UA

for every A in A and X in X .
Prove that every adjunction F a U : A −→ X between preorders is a Galois adjunction, i.e., prove that

equalities FUFX = FX and UA = UFUA hold, for all X and A.

2.6.2 Exercise (Galois connections on powersets) Let R ⊆ A× B be a binary relation. Denote by A =
(PA,⊆) and B = (PB,⊆) the posets of subsets, regarded as categories. Prove that R defines an adjunction

(−)u a (−)` : Bop −→ A

where, for X ⊆ B, X` is the set of all lower bounds of X, i.e.,

X` = {a ∈ A | a R b for all b ∈ X}

and, for Y ⊆ A, Y u is the set of all upper bounds of Y , i.e.,

Y u = {b ∈ B | a R b for all a ∈ Y }

Decipher the above, in connection with Exercise 2.6.1, to derive that

X ⊆ Y u

Y ⊆ X`

holds for every X ⊆ B and Y ⊆ A.
Prove that every adjunction F a U : Bop −→ A has the above form, i.e., find a binary relation R ⊆ A×B

such that U computes the lower bounds and F computes the upper bounds. Hint: think of, e.g., the lower
bounds of singleton sets.

An adjunction of the form (−)u a (−)` : Bop −→ A is often called a Galois connection.
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28 Chapter 2. Adjunctions

2.6.3 Exercise (Dedekind cuts on rational numbers) Consider the set Q of rational numbers and let R
be the relation {(r, s) | r ≤ s} ⊆ Q×Q. Consider the induced Galois connection

(−)u a (−)` : Qop −→ Q

on the category Q = (PQ,⊆) and prove that to give a pair (L,U) with Lu = U and U ` = L is to give a
Dedekind cut on Q, i.e., prove that the pair (L,U) encodes an extended real number (that is, it encodes either
an honest real number or +∞ or −∞).

2.6.4 Exercise (The Lindenbaum-Tarski algebra) Let BA denote the category of Boolean algebras and
their homomorphisms. Denote by U : BA −→ Set the obvious underlying functor.

Recall that a free Boolean algebra on a set X is usually called the Lindenbaum-Tarski algebra of formulas
of classical propositional logic on the set X of atomic propositions.

Hence U has a left adjoint, denote it by F . Prove that F a U : BA −→ Set is equivalent to the fact that
every valuation val : X −→ UA of atomic propositions in the (underlying set of) Boolean algebra A can be
uniquely extended to a homomorphism ‖−‖val : FX −→ A from the Lindenbaum-Tarski algebra of all formulas.

2.6.5 Exercise (Heyting implication as a right adjoint) Recall the notion of a Heyting algebra. Prove
that a distributive lattice (H,∧,∨) is a Heyting algebra iff the monotone map − ∧ a : H −→ H (considered
as a functor) has a right adjoint a ⇒ −. Write down the corresponding bijection and give it an interpretation
known from logic.

2.6.6 Exercise (Residuated lattices) Recall that a residuated lattice is a lattice (L,∧,∨) equipped with a
constant e, and three binary operations ⊗, →, ←, satisfying certain axioms.

Prove that the axioms can be stated in a compact way as follows: a residuated lattice is a lattice together
with an associative and unitary monotone binary operation ⊗, such that all monotone maps a ⊗ (−) and all
monotone maps (−)⊗ b have right adjoints.

2.6.7 Exercise (Discrete and indiscrete topological spaces) Let Top be the category of topological spaces
and continuous maps. Denote by U : Top −→ Set the obvious underlying functor. Prove that there exist free
and cofree objects w.r.t. U . Hint: think of discrete and indiscrete topological spaces.

2.6.8 Exercise (The calculus of mates) Suppose F a U : A −→ X and F ′ a U ′ : A −→ X are adjunc-
tions. Prove that there is a bijection

[A ,X ](U,U ′) ∼= [X ,A ](F ′, F )

Given τ : U −→ U ′, the corresponding τ : F ′ −→ F is called a mate of τ . Vice versa, τ is called a mate of τ .

Hint: given τ : U −→ U ′, define τ as in

F ′
τ //

F ′η
��

F

F ′UF
FτF ′

// F ′U ′F

ε′F

OO

where η is the unit of F a U and ε′ the counit of F ′ a U ′.

2.6.9 Exercise (U is faithful, if it reflects epis) Suppose F a U : A −→X . Prove that U is faithful iff it
reflects epimorphisms. The latter statement means: e is epi, whenever Ue is epi.

2.6.10 Exercise (Properties of U in terms of transposes) Suppose F a U : A −→ X . Prove that U is
faithful iff the following condition holds: f ] : FX −→ A is an epimorphism, whenever f : X −→ UA is an
epimorphism.
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2.6.11 Exercise (Not every general adjunction is of Galois type) Recall Exercise 2.6.1. Find an ad-
junction F a U : A −→ X such that at least one of the natural transformations εF : FUF −→ F ,
ηU : U −→ UFU is not an isomorphism. Hint: most of the adjunctions you know from Universal Algebra
will do.

Conclude that a general adjunction F a U need not be of Galois type (i.e., one where both ηU and εF are
isomorphisms). For more on Galois adjunctions, see [10].

2.6.12 Exercise (Actions of a monoid, diagrammatically) Prove that the requirements on M-actions and
M-equivariant maps of Example 2.1.4 can be stated in diagrammatical form as follows: the diagrams

1×X i×M
// M ×X

@

��

X

M ×M ×X M×@
//

◦×X
��

M ×X

@

��

M ×X
@

// X

and

M ×X
M×f

//

@

��

M ×X ′

@′

��

X
f

// X ′

commute. Above, 1 denotes the one-element set and we have identified the cartesian product 1×X with X.

2.6.13 Exercise (The opposite adjunction) Use string diagrams to prove the following: suppose an ad-
junction F a U : A −→ X is given, with the unit η and the counit ε. Prove that Uop a F op : X op −→ Uop .
Hint: given the string diagram called D, think about the string diagram D turned upside down, decorate all
the items in D by writing op to them, and call the resulting diagram Dop . Then use the string diagrams for η
and ε to give the unit and the counit of Uop a F op .
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Chapter 3

Limits and colimits

A category theorist believes that a category without equalisers is
“incomplete” and regards with suspicion statements such as “all
sets will be assumed nonempty” which preface many books and
papers; to her, it is like assuming that all complex numbers are
nonzero.

Ernest G. Manes

Notions of a limit and colimit will generalise constructions we know from universal algebra: for example,
a product of two lattices, a quotient of a group modulo a group congruence, etc. In fact, certain colimits and
their interaction with an underlying functor U : A −→ X will play a fundamental rôle in recognising A as a
“variety” over X .

3.1 Limits by universal cones

Limits of diagrams in categories generalise the notion of a greatest lower bound (aka infimum) of a set of elements
of a poset. For posets, to say that we have a greatest lower bound comprises of two facts: that we have a lower
bound and that we have a greatest of lower bounds. Lower bounds are generalised to cones, having a greatest
lower bound is generalised to having a cone satisfying a universal property.

3.1.1 Definition Suppose D is a category. A functor D : D −→ X is called a diagram of scheme D in X .
The diagram D is called small , if the scheme D is a small category.1

3.1.2 Definition A cone for D : D −→ X is a tuple (X, fd), where fd : X −→ Dd is a collection indexed by
objects of D , such that the triangle

Dd

Dδ
��

X

fd 66

fd′
((
Dd′

commutes, for every δ : d −→ d′ in D .
A cone (L,projd) for D is called a limit of D, provided it has the following universal property:

For every cone (X, fd) for D there is a unique f : X −→ L such that the triangle

X
f
//

fd !!

L

projd
��

Dd

commutes, for every d in D .

1That is, the objects of D form a set.
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3.1. Limits by universal cones 31

A category X is called complete, if it has limits of all small diagrams.

As we expect, limits are essentially unique.

3.1.3 Lemma Suppose (L1,proj1d) and (L2,proj2d) are limits of D : D −→ X . Then there is a canonical
isomorphism c : L1 −→ L2. Conversely, if (L,projd) is a limit of D and f : L −→ L′ an isomorphism, then
(L′, f · projd) is a limit of D.

Proof. Define c : L1 −→ L2 using the universal property of (L2,proj2d) and define d : L2 −→ L1 using the
universal property of (L1,proj1d). Then d ·c = 1L1

follows by the universal property of (L1,proj1d) and c ·d = 1L2

follows by the universal property of (L2,proj2d). �

3.1.4 Example Let X be a preorder, considered as a category. A limit of a diagram D having two-object
discrete category D as a scheme is the “greatest lower bound” of two points in X . Unless X is actually a
poset, such an “infimum” need not be determined uniquely.

To see an example, let D have two objects denoted by 0 and 1 and let the identity morphisms be the only
morphisms in D . To give a diagram D : D −→ X is to give two elements D0 and D1 of the preorder X .
Suppose X is the following preorder on the set {a, b, c, d} with a ≤ c, a ≤ d, b ≤ c, b ≤ d, a ≤ b, b ≤ a. If
D0 = c and D1 = d, then both a and b are limits of D.

3.1.5 Example It is quite easy to verify that the following formulas describe various notable limits in the
category Set.

(1) A product and a terminal object . A set I can be regarded as a small discrete category. A limit of
D : I −→ Set is the cartesian product ∏

i∈I
Di

and proji is the projection on the i-th cordinate. This construction includes the case of empty I: the
product of an empty family is any one-element set. The product of an empty family is called a terminal
object .

Observe that there exists an isomorphism

Set(X ′,
∏
i∈I

Di) ∼=
∏
i∈I

Set(X ′, Di)

natural in X ′.

(2) An S-th power of an object X. A special case of the product is the S-th power of X, denoted by S t X.
It is thus the limit of the diagram D : S −→ Set, where S is discrete and Ds = X for all s. The set S t X
has functions f : S −→ X as elements, the projection projs : S t X −→ X is the evaluation-at-s, i.e.,
projs(f) = f(s).

Observe that there is an isomorphism

Set(X ′, S t X) ∼= Set(S, Set(X ′, X))

natural in X ′.

(3) An equaliser is a limit of a diagram D : D −→ Set, where D has the following shape

d
δ0 //

δ1

// d′

Hence a cone for D can be expressed by giving f : X −→ Dd such that Dδ0 · f = Dδ1 · f , or, in the
language of diagrams, by giving a commutative diagram

X
f
// Dd

Dδ0 //

Dδ1

// Dd′
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32 Chapter 3. Limits and colimits

We say that f equalises Dδ0 and Dδ1.

It is easy to see that a limit, i.e., an equaliser of Dδ0 and Dδ1 is given by the set

E = {x ∈ Dd | Dδ0(x) = Dδ1(x)}

and the inclusion map e : E −→ Dd.

In our definition of a limit there was no restriction on the size of the scheme of a diagram. However,
possession of limits that have a large category as a scheme is rare (although very useful in some applications).
This is why completeness of a category was defined using small diagrams. A small complete category, however,
trivialises to a preorder.

3.1.6 Example A small category having all small powers is necessarily a preorder.
Suppose X is small having all small powers. We want to prove that every hom-set X (X ′, X) contains at

most one element. Suppose this is not the case: fix two objects X, X ′, with X (X,X ′) having at least two
elements. Form the power I t X ′, where I is a set having cardinality λ greater than the cardinality of the set
of all arrows in X . Then the isomorphism

X (X, I t X ′) ∼= Set(I,X (X,X ′))

proves that X (X, I t X ′) contains at least 2λ elements. This is a contradiction.

Dualising the notion of a limit yields the notion of a colimit. We spell out the definition.

3.1.7 Definition A cocone for D : D −→ X is a tuple (X, fd), where fd : Dd −→ X is a collection indexed
by objects of D , such that the triangle

Dd

Dδ
��

X
vv

fd

hh

fd′ Dd′

commutes, for every δ : d −→ d′ in D .
A cocone (C, injd) for D is called a colimit of D, provided it has the following universal property:

For every cocone (X, fd) for D there is a unique f : C −→ X such that the triangle

X oo
f

aa

fd

COO

injd

Dd

commutes, for every d in D .

A category X is called cocomplete, if it has colimits of all small diagrams.

Observe that a colimit in X is a limit in X op . Thus, colimits are essentially unique. However, the
description of colimits is typically more difficult than that of limits. Let us see an example.

3.1.8 Example Dualising Example 3.1.5, we obtain the corresponding colimit concepts in the category Set.

(1) A coproduct an an initial object . A set I can be regarded as a small discrete category. A colimit of
D : I −→ Set is the disjoint union ∐

i∈I
Di

and inji is the injection to the i-th cordinate. This construction includes the case of empty I: the coproduct
of an empty family is the empty set. The coproduct of an empty family is called an initial object .

Observe that there exists an isomorphism

Set(
∐
i∈I

Di,X ′) ∼=
∏
i∈I

Set(Di,X ′)

natural in X ′.
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(2) An S-th copower of an object X. A special case of the product is the S-th copower of X, denoted by
S •X. It is thus the colimit of the diagram D : S −→ Set, where S is discrete and Ds = X for all s. The
set S •X has pairs (s, x) as elements, the injection injs : X −→ S •X sends x to (s, x).

Observe that there is an isomorphism

Set(S •X,X ′) ∼= Set(S, Set(X,X ′))

natural in X ′.

(3) A coequaliser is a colimit of a diagram D : D −→ Set, where D has the following shape

d
δ0 //

δ1

// d′

Hence a cocone for D can be expressed by giving f : Dd′ −→ X such that f ·Dδ0 = f ·Dδ1, or, in the
language of diagrams, by giving a commutative diagram

Dd
Dδ0 //

Dδ1

// Dd′
f
// X

We say that f coequalises Dδ0 and Dδ1.

It is easy to see that a colimit, i.e., a coequaliser of Dδ0 and Dδ1 is given by the quotient map

e : Dd′ −→ Dd′/E

where E is the equivalence relation generated by the set {(Dδ0(x), Dδ1(x)) | x ∈ Dd} and e is the canonical
mapping.

3.1.9 Remark In what follows we will speak of products, coproducts, equalisers and coequalisers in a general
category. Their defining schemata are as in Examples 3.1.5 and 3.1.8, but their concrete descriptions will depend
on the target category X .

3.1.10 Categorical Trick Universal properties of limits and colimits will often be used in the following way:

(1) To define a morphism X −→ L, where L is a limit of some diagram, is to give a cone with vertex X for
that diagram.

(2) To define a morphism C −→ X, where C is a colimit of some diagram, is to give a cocone with vertex X
for that diagram.

3.1.11 Remark The limit and colimit concepts that we introduced are often called conical . There exists an-
other very useful concept of weighted limits and colimits. See the monograph [11] for the full-fledged development
of weighted limits and colimits in the setting of enriched categories.

3.2 Maranda’s Theorem

We state and prove a result that allows us to compute any (co)limit, using just (co)products and (co)equalisers.
In fact, we will only need to compute (co)equalisers of certain pairs, called reflexive.

3.2.1 Definition A parallel pair

X
d0 //

d1

// X ′

is called reflexive if there is a common splitting s : X ′ −→ X, i.e., s is such that the equalities d0 ·s = d1 ·s = 1X′

hold.

We will formulate Maranda’s Theorem for the case of colimits, the case of limits is dual (it deals with
products and equalisers of (reflexive) pairs).
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3.2.2 Theorem (Maranda’s Theorem) For a category X , the following are equivalent:

(1) X has all small colimits.

(2) X has all small coproducts and all coequalisers.

(3) X has all small coproducts and all coequalisers of reflexive pairs.

Proof. Clearly (1) implies (2) and (2) implies (3). To prove (3) implies (1), suppose that D : D −→ X is a
small diagram, and construct the following reflexive pair

∐
δ∈M Ddom(δ)

u //

v
//
∐
d∈ODd

where O denotes the set of objects of D and M denotes the set of morphisms of D , and dom(δ) is the domain
of δ.

The morphisms u and v are constructed using the universal property of coproducts as follows: the diagrams∐
δ∈M Ddom(δ)

u //
∐
d∈ODd

Ddom(δ)
Dδ

//

injδ

OO

Dcod(δ)

injcod(δ)

OO

and ∐
δ∈M Ddom(δ)

v //
∐
d∈ODd

Ddom(δ)

injδ

OO

injdom(δ)

77

are required to commute, for every δ ∈M .
The pair u, v is reflexive: the common splitting s is given by∐

d∈ODd
s //

∐
δ∈M Ddom(δ)

Dd

injd

OO

injdom(1d)

66

Observe that f :
∐
d∈ODd −→ X coequalises u, v iff the collection f · injd : Dd −→ X forms a cocone for D.

Hence a coequaliser of u and v (that is assumed to exist) gives a colimit cocone for D. �

Notice that from Examples 3.1.5 and 3.1.8 and from the above theorem, we can infer that the category Set
has limits and colimits of all small diagrams, hence Set is both complete and cocomplete. Moreover, Maranda’s
Theorem gives us a concrete desciption of limits and colimits in Set.

3.2.3 Example Description of limits and colimits in the category Set.

(1) How to construct a limit of a diagram D : D −→ Set.

First form a cartesian product P =
∏
dDd of all objects Dd, denote by πd : P −→ Dd the projection onto

the d-th coordinate. Then form the set

L = {(xd) ∈ P | Dδ(xd) = xd′ , δ : d −→ d′}

Denote the composite of the inclusion map i : L −→ P with πd by projd : L −→ Dd. Then (L,projd) is a
limit of D.

If you draw a picture you realise why the elements of L are often called compatible threads.
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(2) How to construct a colimit of a diagram D : D −→ Set.

First form a disjoint union U =
∐
dDd of all objects Dd, denote by ιd : Dd −→ U the injection of the

d-th coordinate. Then define an equivalence relation E on U that is generated by pairs

(xd, xd′), where Dδ(xd) = xd′ , δ : d −→ d′

and form the quotient map e : U −→ U/E. Denote the composite of ιd with e by injd : Dd −→ U/E.
Then (U/E, injd) is a colimit of D.

3.3 Interaction of functors and limits

3.3.1 Definition We say that U : A −→ X preserves a limit (L,projd) of a diagram D : D −→ A , if
(UL,Uprojd) is a limit of U ·D : A −→X . The preservation of a colimit is defined dually.

3.3.2 Theorem Suppose U : A −→X has a left adjoint. Then U preserves any limit existing in A .

Proof. Denote by F the left adjoint of U . Suppose (L,projd) is a limit of D : D −→ A . We need to prove
that (UL,Uprojd) is a limit of U ·D : D −→X . To that end, consider a cone (X, fd) for U ·D.

Since fd : X −→ UDd, we can consider its transpose f ]d : FX −→ Dd. Observe that (FX, f ]d) is a cone for
D. This is seen as follows: the diagram

Dd

Dδ

��

��

f]d

FUDd

εDd 55

FUDδ
��

FX

Ffd 55

Ffd′
))

FUDd′

εDd′ ))
Dd′OO

f]
d′

commutes, since the triangle does ((FX,Ffd) is a cocone for FUD) and the trapezoid does commute (naturality
of the counit ε).

Since (L,projd) is a limit, there is a unique f : FX −→ L such that projd ·f = f ]d holds for every d. Consider
now the transpose f [ : X −→ UL of f . Then Uprojd · f [ = fd holds by the uniqueness of transposes. �

Theorem 3.3.2 does not have a converse in general. For example, consider the category cBA of complete
Boolean algebras and all Boolean homomorphisms preserving all suprema and all infima. Then cBA has all small
limits and the obvious underlying functor U : cBA −→ Set preserves them. However, for a given countable set
X, there is a proper class of complete Boolean algebras that are generated by X, see [20]. Thus, the solution
set at X does not exist.

There is a converse to the statement of Theorem 3.3.2 provided that U satisfies a certain side condition that
is reminiscent of the existence of free objects.

3.3.3 Definition We say that U : A −→ X satisfies the Solution Set Condition at X, provided there exists
a set SX = {fi : X −→ UAi | i ∈ I} such that for every f : X −→ UA there is (not necessarily unique)
h : Ai −→ A such that the triangle

UAi
Uh // UA

X

fi

OO

f

<<

commutes.
The set SX is called the solution set for X.
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3.3.4 Remark The notion of a solution set for X generalises the notion of a free object (F0X, ηX) on X in
two ways:

(1) One universal arrow ηX : X −→ UF0X is replaced by a set of arrows fi : X −→ UAi in the solution set.
As we will see, under certain circumstances, the arrows fi can serve as a “germ” of the universal arrow.

(2) The universal property of ηX : X −→ UF0X is weakened: one requires the existence of some (not
necessarily unique) extension of f : X −→ UA along some fi in the solution set.

3.3.5 Theorem (Freyd’s General Adjoint Functor Theorem aka GAFT) Suppose A is a category hav-
ing all small limits, suppose U : A −→X is a functor. Then the following are equivalent:

(1) U has a left adjoint.

(2) U preserves all small limits and satisfies the following Solution Set Condition at every X.

Proof. (1) implies (2): The functor U preserves limits by Theorem 3.3.2. Moreover, the one-element set

{ηX : X −→ UFX}

forms the solution set at X.
To prove that (2) implies (1), we need to construct a free object η : X −→ UF0X on every X. We divide

the proof into two steps:

(i) We prove that a weakly free object on X exists. That is, we will construct η′X : X −→ UA having the
universal property with the uniqueness condition removed.

(ii) We will “reduce” A to an honest free object F0X.

We fix X, a solution set SX = {fi : X −→ UAi | i ∈ I}, and we proceed as follows:

(i) Define A =
∏
i∈I Ai in A , denote the product projections by πi. Since U preserves (A, πi), the cone

(UA,Uπi) is a product in X and we can define η′X : X −→ UA as the unique morphism making the
triangles

X
η′X //

fi !!

UA

Uπi
��

UAi

(3.1)

commutative.

To see that η′X exhibits A as weakly free on X, we need to show that for every f : X −→ UB there is a
(not necessarily unique) h : A −→ B such that Uh · η′X = f holds.

Given f , observe that there exists fi : X −→ UAi in the solution set SX and hi : Ai −→ B such that
Uhi · fi = f . Hence we may extend diagram (3.1) and define h : A −→ B as indicated:

X
η′X //

fi

!!

f

��

UA

Uπi
��

UAi

Uhi
��

UB oo

Uh

(ii) The “reduction” of A will be done by a “collective equaliser”. More precisely, define F0X as the (vertex)
of a limit

F0X
e // A

h //...
h′
//
A (3.2)
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where h, h′ range over all morphisms from A to A such that Uh · η′X = η′X (and Uh′ · η′X = η′X).

This limit exists, since A (A,A) is a small set and h, h′ are picked from that set. Moreover, U preserves
the above limit and we can use the universal property to define ηX : X −→ UF0X

UF0X
Ue // UA

Uh //...
Uh′
//
UAOO

η′X
X

ηX

OO

η′X

;;

(3.3)

We prove that X 7→ F0X, ηX : X −→ UF0X is a free object on X.

We know that X 7→ F0X, ηX : X −→ UF0X is certainly a weakly free object on X, since X 7→ A,
η′X : X −→ UA is.

Suppose that for f : X −→ UA there are h1, h2 : F0X −→ A such that Uh1 · ηX = Uh2 · ηX = f . We
need to prove h1 = h2. To that end, form the equaliser

E
j
// F0X

h1 //

h2

// A (3.4)

and observe that to prove h1 = h2 it suffices to prove that j is an isomorphism.

The equaliser (3.4) is preserved by U , hence there is a factorisation

UE
Uj
// UF0X

Uh1 //

Uh2

// UA

X

f

OO

ηX

;;

(3.5)

since Uh1 · ηX = Uh2 · ηX holds by assumption.

Now we use weak freeness of η′X : X −→ UA to define (not necessarily in a unique way) k : A −→ E, such
that

UA
Uk // UE

X

η′X

OO

f

<<

(3.6)

commutes.

Putting (3.6), (3.5) and (3.3) together yields a diagram

UA
Uk // UE

Uj
// UF0X

Ue // UA
��

U1A

X
η′X

bb

f

OO

ηX
;;

η′X

55

showing that e equalises 1A and e · j · k. Moreover, both 1A and e · j · k belong to the set of which e is an
equaliser.

Therefore the diagram

F0X
e // A

k // E
j
// F0X

e //
OO

1F0X

(∗)
A
��

1A

commutes. But the area (∗) commutes, since e is a monomorphism, being an equaliser.

We proved that j is split epi. Since j is an equaliser, it is a monomorphism. Therefore j is an isomorphism.
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The proof is finished. �

3.3.6 Example The Solution Set Condition is, of course, a void requirement in the case of preorders. More
precisely, the following are equivalent, for a complete preorder A and a monotone map U : A −→X :

(1) U has a left adjoint.

(2) U preserves infima.

The reason is that the set {X ≤ UAi | i ∈ I}, where I is the set of all objects of A , clearly satisfies the
requirements of Theorem 3.3.5.

3.4 Exercises

3.4.1 Exercise (Equalisers and coequalisers in preorders) Prove that any preorder has equalisers and
coequalisers.

3.4.2 Exercise (Completeness does not imply cocompleteness) Find a complete category that is not
cocomplete. Hint: think, for example, of the large poset of all ordinals, ordered by reversed inclusion. Were it
cocomplete, the largest ordinal would exist.

3.4.3 Exercise (Pullbacks and kernel pairs) A limit of the diagram

B

d1
��

A
d0

// C

is called a pullback (of d0 along d1). Describe pullbacks in Set.
Pay special attention to the pullback of d0 along itself (the corresponding cone is called the kernel pair of

d0). Prove that, in the category of Set, this construction gives rise to an equivalence relation on A.

3.4.4 Exercise (A factorisation using kernel pairs and coequalisers of reflexive pairs) Let X be a
category having kernel pairs and coequalisers of reflexive pairs. Perform, for f : X −→ X ′, the following
constructions:

(1) Form the kernel pair of f :

P
p1 //

p0

��

X

f

��

X
f
// X ′

(2) Using the universal property of pullbacks, prove that the pair

P
p0 //

p1
// X

is reflexive.

(3) Form a coequaliser

P
p0 //

p1
// X

e // Z
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(4) Use the universal property of coequalisers to define m : Z −→ X ′ as the unique morphism in the diagram

P
p0 //

p1
// X

e //

f   

Z

m

��

X ′

Analyse the above construction in Set and prove that f = m · e is the usual factorisation of a map through its
image. That is, prove that one can put Z = f [X] and m is the inclusion.

3.4.5 Exercise (Limits and colimits in sets) Work out in detail Examples 3.1.5 and 3.1.8.

3.4.6 Exercise (Filtered colimits) A colimit of a small diagram D : D −→ X is called filtered , if D is a
filtered category . That D is filtered means: every finite diagram S : C −→ D has a cocone in D .

Prove the following:

(1) A category D is filtered iff it is non-empty, it contains a cocone for every pair of objects, and it contains
a cocone for every pair of parallel morphisms.

Conclude that a preorder D is filtered iff it is non-empty and upwards-directed , i.e., every pair d0, d1 has
an upper bound in D .

(2) Prove that every set X can be expressed as a filtered colimit of its finite subsets.

(3) A functor Set(X,−) : Set −→ Set preserves filtered colimits iff the set X is finite. Hint: you will use
Example 3.2.3.

3.4.7 Exercise (Natural numbers as an initial object) Define the category A as follows:

(1) Objects of A are diagrams of the form

1
z // X

s // X

where 1 is a one-element set, X is a set, and z : 1 −→ X, X −→ X are mappings. We will write (X, z, s)
for short.

(2) A morphism from (X, z, s) to (X ′, s′, f ′) is a map h : X −→ X ′, making both squares in the diagram

1
z // X

s //

h
��

X

h
��

1
z′
// X ′

s′
// X ′

commutative.

Prove that (N, zero, succ), where N is the set of natural numbers, the function zero picks up number 0, and the
function succ is the successor function, is an initial object of A .

Hint: think of induction principles and definition by recursion.

3.4.8 Exercise (Natural numbers as a free algebra for a functor) Rewrite the category A from Exer-
cise 3.4.7 as follows:

(1) Prove that the assignment X 7→ X + 1 can be extended to a functor L : Set −→ Set. Hint: use the
universal property of a coproduct.
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(2) Prove that to give an object of A is to give a map a : LX −→ X. Prove that to give a morphism in A is
to give a mapping h : X −→ X ′ such that the square

LX
Lh //

a

��

LX ′

a′

��

X
h
// X ′

commutes. Hint: use the universal property of a coproduct again.

(3) Denote the category, having mappings a : LX −→ X as objects and mappings h : X −→ X ′ making
the above squares commutative, by SetL. The resulting category is called the category of algebras for the
functor L.

(4) Prove that the obvious assignment (X, a) 7→ X extends to a functor UL : SetL −→ Set.

(5) Prove that UL has a left adjoint. If you denote the left adjoint by FL, show that natural numbers with
zero function and successor operation form a free L-algebra on the empty set. What is FL(X) for a
general set X?

3.4.9 Exercise (Natural number objects in a general category) Generalise Exercise 3.4.8 by replacing
Set with any category X having a terminal object 1 and binary coproducts. More in detail:

(1) Prove that the assignment X 7→ X + 1 extends to a functor L : X −→X .

(2) Define the category X L and the functor UL : X L −→X in the obvious way.

(3) Suppose UL has a left adjoint. Denote the adjoint by FL. If X has an initial object 0, think of FL0 as
of the “object of natural numbers” in X . Try to describe the concept in some categories other than Set.
What happens when X is a preorder?

3.4.10 Exercise (Algebras for a signature) We generalise Exercise 3.4.9 and prove that a finitary syntax
can be encoded into functors of a special kind. Denote by N the discrete category having finite ordinals as
objects and fix a category X having all limits and colimits that are needed in the following constructions:

(1) Think of a functor S : N −→ Set as of a finitary signature. More precisely, think of each value Sn as of
the set of n-ary operations of the signature.

(2) Given a finitary signature S, prove that the assignment X 7→
∐
n Sn •Xn, where the coproduct is taken

over all finite ordinals and Xn denotes the power n t X, can be extended to a functor LS : X −→X .

(3) Analyse a morphism a : LSX −→ X as follows:

(a) To give a is to give an : Sn •Xn −→ X, for every finite ordinal n. Hint: use the universal property
of coproducts.

(b) To give an : Sn • Xn −→ X is to give a map ǎn : Sn −→ X (Xn, X). Hint: use the universal
property of copowers.

(c) To give ǎn : Sn −→ X (Xn, X) is to give, for each n-ary operation symbol σ, a morphism [[σ]] :
Xn −→ X in X . The morphism [[σ]] : Xn −→ X is the interpretation of the operation symbol σ in
the algebra.

Think of LSX as of the “object of terms in variables X of depth ≤ 1. Such terms are commonly called
flat terms. The above analysis shows that to give a : LSX −→ X is to give interpretations in X for all
operations in the signature.
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(4) Analyse the commutative square

LSX
LSh //

a

��

LSX
′

a′

��

X
h

// X ′

in an analogous way as you did analyse the morphism a : LSX −→ X and conclude that the commutativity
of the above square is equivalent to commutativity of the squares

Xn hn //

[[σ]]

��

X ′n

[[σ]]

��

X
h
// X ′

for every n and every σ in Sn. Shortly: homomorphisms of are exactly those morphisms that preserve all
the specified operations.

The category X LS is called the category of algebras for the signature S. Give various instances of X LS when
X = Set.

3.4.11 Exercise (Free algebras for a signature) Let S : N −→ Set be a finitary signature in the sense of
Exercise 3.4.10. Prove, using Theorem 3.3.5, that ULS : SetLS −→ Set has a left adjoint.

Try to analyse in detail what you use when finding a solution set SX for a set X and try to generalise the
result for other categories than Set.

3.4.12 Exercise (Algebras and coalgebras for a general endofunctor) Generalise Exercise 3.4.10 for an
arbitrary functor L : X −→ X . That is, define the category X L of algebras for L and the functor
UL : X L −→X .

Consider the category (X op)L
op

and give an explicit description of its objects and morphisms. Write XL

instead of (X op)L
op

and call it the category of coalgebras for L.

3.4.13 Exercise (Algebras as prefixed points and Lambek’s Lemma) Let X be a poset, let L : X −→
X be a monotone map. Prove that X L is exactly the poset of prefixed points of L, where X is a prefixed point
for L, iff the inequality LX ≤ X holds.

Prove:

(1) A least prefixed point of L is a fixed point of L.

(2) Generalise the above to obtain Lambek’s Lemma: if X is a category, L : X −→ X a functor, and
a : LX −→ X is an initial object of X L, then a is an isomorphism. Hint: consider the L-algebra
La : LLX −→ LX and use initiality of a : LX −→ X to conclude that the square

LX
Lh //

a

��

LLX

La
��

X
h
// LX

commutes for a unique h : X −→ LX. Conclude that h is the inverse of a, using initiality again.

(3) Conclude that SetP , where P : Set −→ Set is the powerset functor, is not a cocomplete category. Hint: a
cocomplete category has to have an initial object.

3.4.14 Exercise (Kripke frames as coalgebras) For those who know some basic modal logic. Denote by
P : Set −→ Set the covariant powerset functor , i.e., let PX be the set of subsets of X and, for a mapping
f : X −→ X ′, let Pf send a ⊆ X to its image f [a] ⊆ X ′. Prove that SetP (notation as in Exercise 3.4.12) is
exactly the category of Kripke frames and bounded morphisms that you know from modal logic.

Use Lambek’s Lemma in a clever way to conclude that SetP does not have a terminal object (= a final
Kripke frame does not exist).
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3.4.15 Exercise (Weak limits) A cone (L,projd) is a weak limit of a diagram D : D −→ X , provided that
it has the universal property with the uniqueness requirement removed.

Prove that any functor that preserves weak limits, preserves honest limits. Hint: proceed as follows:

(1) Prove that a weak limit (L,projd) is an honest limit iff the cone projd : L −→ Dd is collectively mono,
i.e., if u = v, whenever projd · u = projd · v holds for every d.

(2) Prove that the cone Hprojd : HL −→ HDd is collectively mono, whenever (L,projd) is a limit and H
preserves weak limits.

3.4.16 Exercise (Truncated GAFT) In this exercise, λ ≥ 1 denotes a regular cardinal. A set is λ-small if
it has fewer than λ elements. A λ-small limit is a limit of a diagram where the scheme has a λ-small set of
morphisms.

Prove the Truncated General Adjoint Functor Theorem:

Suppose A has λ-small limits. For U : A −→X the following are equivalent:

(1) U has a left adjoint.

(2) U preserves λ-small limits, for every X there exists a λ-small solution set SX and, moreover, for
every f : X −→ UA in SX , the set of all h : A −→ A such that Uh · f = f is λ-small.

Hint: go carefully through the proof of Theorem 3.3.5.

3.4.17 Exercise (Heyting implication and the distributive law) Recall from Exercise 2.6.5 the charac-
terisation of Heyting algebras. Prove, using Theorem 3.3.5, that a complete lattice is a Heyting algebra iff the
infinite distributive law ∨

i∈I
(xi ∧ a) =

(∨
i∈I

xi

)
∧ a

holds for any a and any set I.

3.4.18 Exercise (Right adjoints to Set are representable) Prove the following: Suppose F a U : A −→
Set is given. Then U is representable (see Definition 1.2.7).

Hint: define the representing object as F1, and use F a U and Yoneda Lemma.

3.4.19 Exercise (Left adjoints to representable functors) Prove the following: Suppose U : A −→ Set
is representable with representing object A0. Then U has a left adjoint iff, for every set X, the copower X •A0

exists in A .
Hint: use the universal property of copowers.

3.4.20 Exercise (Left adjoint to the ultrafilter functor) Let BA denote the category of Boolean algebras
and their homomorphisms. Let 2 denote the two-element Boolean algebra. Use Exercise 3.4.19 in a clever way
to establish the existence and description of a left adjoint of the functor BA(−, 2) : BAop −→ Set. Observe that
BA(A, 2) is the set of all ultrafilters on the Boolean algebra A.

3.4.21 Exercise (Left adjoints to contravariant representable functors) Use Exercise 3.4.19 in a clever
way to establish the necessary and sufficient conditions on A such that the contravariant representable functor
A (−, A0) : A op −→ Set has a left adjoint.
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Chapter 4

Monads

Each monad perceives all the other monads more or
less clearly, but only God perceives all monads with
utter clarity.

Baron Gottfried Wilhelm von Leibniz

We are going to introduce the main concept of this text — a monad on a category. As we will see, a monad
encodes what it means to be an algebraic theory. A monad can be viewed in various ways. We will stress the
following two aspects:

(1) A monad is a monoid in a certain sense.

(2) A monad is an abstract formation of terms.

Both views will be useful. Namely, we will introduce the category of “actions of a monad” in an analogous way
as the actions of a monoid are introduced. On the other hand, we will introduce a “category of substitutions”
for a monad. Both concepts are of great interest: actions of a monad (the Eilenberg-Moore category) encode
varieties in the sense of Category Theory, substitutions (the Kleisli category) encode the minimal information
of an algebraic theory that is needed to reconstruct its variety of algebras.

4.1 Monads as monoids

Consider an adjunction F a U : A −→X . Recall that the diagrams

U
ηU
// UFU

Uε
��

U

FUF

εF
��

F
Fη
oo

F

FUFUF
FUεF //

εFUF
��

FUF

εF
��

FUF
εF

// F

commute. In fact, the triangles are the triangle identities (2.2) for F a U and the square is the naturality square
for ε.

Precomposing the triangle on the left with F and postcomposing the remaining two diagrams with U , we
therefore obtain commutative diagrams

UF
ηUF

// UFUF

UεF
��

UF

UFUF

UεF
��

UF
UFη
oo

UF

UFUFUF
UFUεF//

UεFUF
��

UFUF

UεF
��

UFUF
UεF

// UF
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or, writing T = UF , µ = UεF , the diagrams

T
ηT
// TT

µ

��

TT

µ

��

T
Tη
oo TTT

Tµ
//

µT

��

TT

µ

��

T T TT
µ
// T

(4.1)

Compare the above with the diagrammatic description of a monoid M = (M, i, ◦):

1×M i×M
// M ×M

◦
��

M

M ×M

◦
��

M × 1
M×i
oo

M

M ×M ×M M×◦
//

◦×M
��

M ×M

◦
��

M ×M ◦
// M

4.1.1 Definition A triple T = (T, η, µ) consisting of a functor T : X −→ X , natural transformations η :
IdX −→ T , µ : TT −→ T , such that the diagrams (4.1) commute is called a monad on X . The transformation
η is called the unit of T, the transformation µ is called the multiplication of T. The two triangles in (4.1) are
said to express that η is a two-sided unit for µ and the rectangle in (4.1) is said to express the associativity of
µ.

4.1.2 Remark In some literature, monads are called triples or standard constructions. Both names seem to
be unfortunate and they become obsolete.

The following result is almost a tautology.

4.1.3 Lemma Every adjunction F a U : A −→X gives rise to a monad T on X .

To give examples of monads that (at the first sight) do not come from an adjunctions, consider the following
two examples.

4.1.4 Example Suppose X is a poset. To give a monad T = (T, η, µ) on X is to give a monotone map
T : X −→ X satisfying X ≤ TX and TTX ≤ TX, for every X. Such data are commonly called a closure
operator on X .

4.1.5 Example Let P : Set −→ Set denote the powerset functor. That is: PX is the set of subsets of X,
Pf : PX −→ PX ′ sends a set a ⊆ X to its image f [a] ⊆ X ′. Denote further by {.}X : X −→ PX the map
sending x to {x} and denote by

⋃
X : PPX −→ PX sending an element {ai | i ∈ I} to

⋃
i∈I ai.

Then the triple (P, {.},
⋃

) is a monad on Set.

As we know, looks can be deceiving: both monads above are given by adjunctions. In fact, we prove that
every monad is given by an adjunction. Moreover, every monad can be “resolved” into an adjunction in at least
two ways, see Section 4.2 and Section 4.3.

4.2 The Eilenberg-Moore category

Bearing in mind the monad-monoid analogy, we define the category of Eilenberg-Moore algebras for a monad
T as the category of “T-actions”. More precisely, the category X T is formed in the following manner:

(1) A pair (X, a), where X is an object of X and a : TX −→ X is a morphism, such that the following two
diagrams

X
ηX // TX

a

��

TTX
Ta //

µX

��

TX

a

��

X TX
a
// X

(4.2)

commute, is called an Eilenberg-Moore algebra for T. We will often say that (X, a) is a T-algebra.
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(2) Given two T-algebras (X, a), (X, a′), a morphism of algebras is an arrow h : X −→ X ′ such that the
square

TX
Th //

a

��

TX ′

a′

��

X
h
// X ′

(4.3)

commutes. Morphisms in X T compose the way they do in X .

4.2.1 Remark Recall the notion of an algebra for a functor from Exercise 3.4.12. For every monad T =
(T, η, µ), there is an obvious fully faithful functor

E : X T −→X T

that is almost never an equivalence.

4.2.2 Example Recall from Example 4.1.4 that a monad T = (T, η, µ) on a poset X is a closure operator. A
T-algebra (X, a) is a closed element : the morphism a : TX −→ X witnesses the inequality TX ≤ X and the
inequality X ≤ TX is witnessed by ηX . Hence X = TX by antisymmetry.

Observe that, in this case, the categories X T and X T are the same.

4.2.3 Example An algebra for the powerset monad P = (P, {.},
⋃

) of Example 4.1.5 is exactly a complete
join-semilattice and an algebra homomorphism is exactly a join-preserving map.

(1) Suppose (X,
∨

) is a complete join-semilattice. Define a : PX −→ X by putting a(A) =
∨
A.

Then
∨
{x} = x holds, establishing the triangle in (4.2).

Furthemore, the equality
∨

(
⋃
{Ai | i ∈ I}) =

∨
{
∨
Ai | i ∈ I} establishes the square in (4.2).

Hence, every join-semilattice is a P-algebra.

(2) Given a P-algebra map a : PX −→ X, define x ≤ y iff a({x, y}) = y. Then ≤ is a partial order:

(a) For reflexivity, use a({x}) = x.

(b) Suppose x ≤ y and y ≤ z. Then a({x, z}) = a({x, a({y, z})}) = a({x} ∪ {y, z}) by (4.2). Using
the axioms again, we proceed a({x} ∪ {y, z}) = a({x, y, z}) = a({x, y} ∪ {z}) = a({a({x, y}), z}) =
a({y, z}) = z. Hence ≤ is transitive.

(c) If x ≤ y and y ≤ x, then y = a({x, y}) = x, hence ≤ is antisymmetric.

(3) To prove that a(A) = sup≤A, observe that for every x ∈ A, a({x, a(A)}) = a({x}∪A) = a(A). Therefore
a(A) is an upper bound of A. Suppose u is an upper bound of A, then a({a(A), u}) = a(A ∪ {u}) =
a(
⋃
A{a, u}) = a(a({u})) = u. Hence a(A) ≤ u.

(4) The square (4.3) clearly says that T-algebra morphisms are exactly the join-preserving maps.

4.2.4 Proposition (The Eilenberg-Moore adjunction) Suppose T is a monad on X . The assignments
(X, a) 7→ X, f 7→ f define a functor UT : X T −→X that has a left adjoint FT. The monad of FT a UT is T.

Proof. Define FTX = (TX, µX). The axioms for a monad guarantee that (TX, µX) is an Eilenberg-Moore
algebra for T:

TX
ηTX // TTX

µX

��

TX

TTTX
TµX //

µTX

��

TTX

µX

��

TTX
µX

// TX
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Given f : X −→ X ′, define FTf = Tf . That Tf is a morphism of algebras follows from naturality of µ:

TTX
TTf

//

µX

��

TTX ′

µX′

��

TX
Tf

// TX ′

We prove that, for every X, the pair (FTX, ηX) is a free object on X, w.r.t. UT.

Indeed, suppose (X ′, a′) is any algebra and suppose f : X −→ X ′ is any morphism. Define f ] : TX −→ X ′

as the composite a′ · Tf . The following diagram proves that f ] is a morphism of algebras:

TTX
TTf

//

µX

��

TTX ′
Ta′ //

µX′

��

TX ′

a′

��

��

Tf]

TX
Tf

// TX ′
a′
// X ′OO

f]

Above, the square on the left commutes due to naturality of µ and the square on the right commutes due to
the fact that (X ′, a′) is an algebra for T.

To prove that f ] · ηX = f , consider the diagram

TX
Tf
// TX ′

a′ // X ′

X

ηX

OO

f
// X ′

ηX′

OO

where the square is naturality of η and the triangle is an axiom for algebra (X, a′).

To prove that f ] is uniquely determined, consider any h : (TX, µX) −→ (X ′, a′) such that h · ηX = f . Then
the diagram

TX
TηX // TTX

Th //

µX

��

TX ′

a′

��

��

Tf

TX
h
// X ′

commutes, proving that h = a′ · Tf . �

The next proposition will tell us that the formation of limits in the Eilenberg-Moore category is very easy:
one computes the limit in the underlying category and endowes the resulting object with the structure of an
algebra. In fact, the algebraic structure on the limit is determined uniquely, hence we actually compute a limit
in the Eilenberg-Moore catgeory. Recall that this process is well-known from Universal Algebra.

4.2.5 Proposition (Limits in the Eilenberg-Moore category) Let D : D −→ X T be a diagram such
that a limit of UT ·D : D −→X exists. Then a limit of D exists in X T.

Proof. Denote Dd by ad : TXd −→ Xd. Denote further by (L,projd) a limit of UT · D in X . Therefore
projd : L −→ Xd.
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We will construct a T-algebra a : TL −→ L. The morphism a is defined as a unique one such that the
triangle

TL
a //

Tprojd ""

L

projd

��

TXd

ad
""

Xd

commutes, for every d.
To prove that (L, a) is a T-algebra, we have to verify that equations a · ηL = 1L and a · Ta = a · µL hold.

(1) The equation a · ηL = 1L is derived from the commutative diagram

L
ηL //

projd   

TL
a //

Tprojd

""

L

projd

��

Xd

ηXd // TXd

ad

""

Xd

using the universal property of limits. Above, the square commutes due to naturality of η and the lower
triangle commutes since (Xd, ad) is a T-algebra.

(2) The equation a · Ta = a · µL is verified using the universal property of limits. Consider the following
diagram

TTL
Ta //

TTprojd $$

TL
a //

Tprojd

$$

L

projd

��

TTXd
Tad

// TXd

ad
""

Xd

where the trapezoid commutes by the definition of a.

Consider further the following commutative diagram

TTL
µL //

TTprojd $$

TL
a //

Tprojd

$$

L

projd

��

TTXd µXd

// TXd

ad
""

Xd

�

4.2.6 Corollary Suppose X is complete. Then X T is complete.

4.2.7 Remark The fact that UT preserves limits is not surprising, since UT has a left adjoint. In fact, the
behaviour of UT is a lot stronger — it creates limits.

A general functor U : A −→X is said to create a limit of D : D −→ A , provided that for a limit (L,projd)

of U ·D, there is a unique cone (L̂, p̂rojd) for D such that UL̂ = L and U p̂rojd = projd and, moreover, (L̂, p̂rojd)
is a limit of D.
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The existence of colimits in X T is more subtle and we postpone it to Proposition 5.1.7. See however
Exercise 4.5.8.

4.3 The Kleisli category

Since a monad T = (T, η, µ) can be considered as an abstract way of manipulating algebraic terms, it is natural
to think of a morphism of the form f : X −→ TY as of a substitution. We now introduce a category of
substitutions Kl(T), called the Kleisli category of T.

(1) Objects of Kl(T) are the same as the objects of X .

(2) An arrow f : X −→ Y in Kl(T) is a substitution from X to Y , i.e., a morphism of the form f : X −→ TY
in X .

(3) Given substitutions f : X −→ Y , g : Y −→ Z in Kl(T) we define their composition to be the arrow

X
f
// TY

Tg
// TTZ

µZ // TZ

4.3.1 Example Suppose that T = (T, η, µ) is a monad on Set. Then TX is the set of terms of an algebraic
theory, having X as the set of variables. A morphism f : X −→ Y in Kl(T) is indeed a substitution: the
mapping f : X −→ TY assings to each x ∈ X a term tx ∈ TY in variables Y .

4.3.2 Lemma The above data indeed constitute a category Kl(T).

Proof. To see that composition is associative, consider arrows f : X −→ Y , g : Y −→ Z, h : Z −→ W in
Kl(T).

Then h · (g · f) in Kl(T) is the composite

X
f
// TY

Tg
// TTZ

µZ // TZ
Th // TTW

µW // TW

and (h · g) · f in Kl(T) is the composite

X
f
// TY

Tg
// TTZ

TTh // TTTW
TµW // TTW

µW // W

and we want to prove that the above two composites are equal. They are indeed, consider the following diagram

X
f
// TY

Tg
// TTZ

TTh //

µZ

��

TTTW

µTW

��

TµW

%%

TZ
Th // TTW

µW

��

TTW

µW
yy

TW

where the square commutes by naturality of µ and the diamond commutes by the associative law for µ.
We prove now that ηX : X −→ TX is a unit for the composition.

(1) ηX · f = f holds in Kl(T), for any f : X ′ −→ TX. The composite ηX · f in Kl(T) is the composite

X ′
f
// TX

TηX // TTX
µX // TX

in X . Now use the unit law for a monad to conclude that the above composite is f .

(2) f · ηX = f holds in Kl(T), for any f : X −→ TX ′. The composite f · ηX in Kl(T) is the composite

X
ηX // TX

Tf
// TTX ′

µX′ // TX ′

22 June 2017, 14:56 48 Jiřı́ Velebil: cats & monads
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in X . Use naturality of η and the unit law for a monad to conclude that the above composite is f :

X
ηX //

f !!

TX
Tf
// TTX ′

µX′ // TX ′

TX ′

ηTX′

::

�

4.3.3 Proposition (The Kleisli adjunction) Suppose T is a monad on X . The assignments X 7→ TX,
(f : X −→ X ′) 7→ (µX′ · Tf : TX −→ TX ′) define a functor UT : Kl(T) −→ X that has a left adjoint FT. The
monad of FT a UT is T.

Proof. That UT is a functor is easy.
We prove that X 7→ X, ηX : X −→ TX exhibits X in Kl(T) as a free object on X in X .
To that end, consider any f : X −→ UT(X ′). Since UT(X ′) = TX, we have f : X −→ TX ′, i.e., we have

defined f ] : X −→ X ′ in Kl(T).
Then UT(f ]) : TX −→ TX ′ is defined as the composite µX′ · Tf . To prove that UT(f ]) · ηX = f , consider

the following diagram

TX
Tf
// TTX ′

µX′ // TX ′

X

ηX

OO

f
// TX ′

ηTX′

OO

in X , where the square is naturality of η and the triangle commutes by axioms of a monad.
Suppose h : X −→ X ′ in Kl(T) is such that UT(h) · ηX = f . We need to prove that h = f . The diagram

above (written with h in the above line) proves that. �

4.4 The Eilenberg-Moore and Kleisli comparison functors

We will want to determine “how far” the category A is from Kl(T) and X T and therefore we will introduce
two prominent functors

KT : Kl(T) −→ A , KT : A −→X T

called comparison functors.

(1) The Eilenberg-Moore comparison functor KT is defined by putting

KTA = (UA,UεA), KTh = Uh

This definition is correct: the pair (UA,UεA) is a T-algebra, since the diagrams

UA
ηUA // UFUA

UεA
��

UA

UFUFUA
UFUεA//

UεFUA
��

UFUA

UεA
��

UFUA
UεA

// UA

commute (the triangle by (2.2) and the square by naturality of ε).

For every h : A −→ A′, the square

UFUA
UFUh //

UεA
��

UFUA′

UεA′

��

UA
Uh

// UA′

commutes by naturality of ε, hence KT is well-defined on morphisms.
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(2) The Kleisli comparison functor KT is defined by putting

KTX = FX, KTf = f ]

where f ] : FX −→ FX ′ is the transpose of f : X −→ UFX ′.

4.4.1 Theorem (Uniqueness of comparisons)

(1) The Eilenberg-Moore comparison functor is the unique one making the triangles

A
KT

//

U
  

X T

UT
}}

X

A
KT

// X T

X

F

``

F T

==

commutative.

(2) The Kleisli comparison functor is the unique one making the triangles

Kl(T)
KT //

UT ""

A

U
~~

X

Kl(T)
KT // A

X

FT

bb

F

>>

commutative.

Proof. (1) It is clear that equalities UT ·KT = U and KT · F = FT hold.

Suppose that K : A −→ X T is any functor such that UT · K = U and K · F = FT hold. Consider
h : A −→ A′. Put KA = (X, a) and KA = (X ′, a′). From UT ·K = U it follows that X = UA, X ′ = UA′ and
Kh = Uh. We prove that a = UεA, the proof that a′ = UεA′ is analogous.

Since εA : FUA −→ A is in A , we can consider KεA : K(FUA) −→ KA in X T. Since K · F = FT and by
the above, KεA is UεA : (TUA, µUA) −→ (UA, a).

Consider now the diagram

TUA
ηTUA // TTUA

TUεA //

µUA

��

TUA

a

��

��

1TUA

TUA
UεA

// UA

The triangle commutes, since (TUA, µUA) is an algebra, the square commutes, since UεA is a homomorphism.
We have proved a = UεA. Therefore K = KT, as desired.

(2) Suppose K : XT −→ A is a functor satisfying UT = U ·K and F = K · FT.

Clearly, KX = FX, for every object X of Kl(T). This follows from K · FT = F .

To prove that, for f : X −→ UFX ′ in Kl(T), the morphism Kf : FX −→ FX ′ is the transpose of f under
F a U , consider

FX
Kf
// FX ′

X
ηX // UFX

UKf
// UFX ′

Since UKf = UTf , we know that the transpose of Kf is the composite

X
ηX // UFX

UFf
// UFUFX ′

UεFX′ // UFX ′OO

UTf
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But the diagram

X
ηX //

f

��

UFX

UFf

��

UFX ′
ηUFX′ // UFUFX ′

UεFX′

��

UFX ′

commutes, proving that the transpose of Kf is f . �

4.5 Exercises

4.5.1 Exercise (Monoids give rise to monads) Suppose M = (M, i, ◦) is a monoid. Prove that the assign-
ment T : X 7→ M ×X extends to a functor T : Set −→ Set. Prove that ηX : X −→ TX, sending x to (i, x),
and µX : TTX −→ TX, sending (m1, (m2, x)) to (m1 ◦ m2, x), form components of natural transformations
η : IdSet −→ T , µ : TT −→ T . Finally, prove that T = (T, η, µ) is a monad on Set and prove that SetT is
isomorphic to M-Acts.

4.5.2 Exercise (Monads are genuine monoids) Recall the string diagrams from Section 2.5. Using the
diagram

•

T

for η : IdX −→ T , and the diagram

•
T T

T

for µ : TT −→ T , write down the monad axioms. Compare your results with the tree representation of nullary
and binary operations known from universal algebra.

4.5.3 Exercise (The unit monad) Prove that, for every category X , the identity functor Id : X −→ X
bears the canonical structure of a monad when we put η and µ to be the identity natural transformations. This
monad is called a unit monad on X and we denote it by I.

Prove that X I is isomorphic to X .

4.5.4 Exercise (The trivial monad) Suppose 1 is a terminal object in a category X and denote, for every
X, by tX : X −→ 1 the respective unique morphism.

Prove that the assignment X 7→ 1 can be extended to a functor T : X −→ X . Prove that there is a
canonical structure of a monad T = (T, η, µ), called a trivial monad .

Prove that if (X, a) is a T-algebra, then X ∼= 1 and a is identity.

4.5.5 Exercise (The double dualisation monad) Recall from Exercise 3.4.21 the necessary and sufficient
condition such that A (−, D) : A op −→ Set has a left adjoint.

Denote the left adjoint by F and describe explicitly the monad D of F a A (−, D). The monad D is called
a double dualisation monad and D is called a dualisation object .
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4.5.6 Exercise (Kleisli algebras) Let X be a one-object category. Denote the unique object of X by ? and
put X = X (?, ?). Observe that X becomes a monoid w.r.t. the composition in X . What is a monad on X ?
(The structure you come up with is called a Kleisli algebra.)

4.5.7 Exercise (Strength of a monad) Prove that every monad T = (T, η, µ) on Set is strong , i.e., prove
that there exists a natural transformation

σX,Y : TX × Y −→ T (X × Y )

called strength of T, such that the diagrams

TX × 1
σX,1

// T (X × 1)

X × 1

ηX×1

ee

ηX×1

99
TTX × Y

σTX,Y
//

µX×Y
��

T (TX × Y )
TσX,Y

// TT (X × Y )

µX×Y

��

TX × Y
σX,Y

// T (X × Y )

commute for every X and Y .
Hint: instead of defining σX,Y you may want to define a function that assigns to each y ∈ Y a function

sy : TX −→ T (X × Y ) and then put σX,Y (t, y) = sy(t). To define sy, consider the map uy : x 7→ (x, y) and
apply T to it to obtain sy.

4.5.8 Exercise (When does UT : SetT −→ Set preserve colimits?) Suppose that T = (T, η, µ) is a monad
on Set. Prove that T1 (where 1 is a one-element set) bears canonically the structure of a monoid. You may
need Exercise 4.5.7 to define ◦ : T1× T1 −→ T1.

Denote the resulting monoid by M = (T1, i, ◦). Prove that the following properties of the underlying functor
UT : SetT −→ Set are equivalent:

(1) UT has a right adjoint.

(2) UT preserves small colimits.

(3) UT preserves small coproducts.

(4) UT preserves small copowers.

(5) T is the monad coming from the monoid M = (T1, e, ◦) as in Exercise 4.5.1, i.e., TX ∼= T1×X, ηX(x) =
(e, x) and µX(m1, (m2, x)) = (m1 ◦m2, x).

Hint: in proving that (4) implies (5), use that T = UTFT preserves copowers, the fact that X ∼= X • 1, and the
fact that X • T1 ∼= T1×X. For the proof that (5) implies (1), recall Example 2.1.4.

4.5.9 Exercise (Relations as a Kleisli category) Prove that the Kleisli category of the powerset monad
(P, {.},

⋃
) of Example 4.1.5 is the category having sets as objects and binary relations as morphisms.

4.5.10 Exercise (Matrices as a Kleisli category) Let R = (R,+,×, 0, 1) be a ring with a unit. A vector
on a set X is a function v : X −→ R with a finite support, i.e., all but finitely many v(x)’s are zero. Let TX
be the set of all vectors on X.

(1) Prove that the assignment X 7→ TX can be extended to a functor T : Set −→ Set.

(2) Call a map m : X −→ TY an X × Y -matrix . Think of m(x) as of the x-th row of the matrix m.

(3) Given matrices m : X −→ TY , n : Y −→ TZ, define the matrix n ·m : X −→ TZ by the usual matrix
multiplication formula, i.e., put

(n ·m)(x)(z) =
∑
y

m(x)(y)× n(y)(z)

Observe that the above sum makes sense due to our definition of a vector.
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(4) Prove that composition of matrices is associative and that there is an identity morphism iX : X −→ TX,
for each X. This identity morphism is called the identity X ×X-matrix .

(5) Denote by Mat(R) the category having sets as objects and matrices as morphisms. Prove that the assign-
ment X 7→ TX can be extended to a functor U : Mat(R) −→ Set that has a left adjoint. Denote the left
adjoint by F .

(6) Prove that Mat(R) is the Kleisli category of the monad T = (T, η, µ) of F a U .

(7) What is the Eilenberg-Moore category of T? Hint: think of a : TX −→ X as sending v : X −→ R to a
formal linear combination

∑
x v(x) ∗ x in X.

4.5.11 Exercise (The Eilenberg-Moore category for a Galois connection) Recall the notation of Ex-
ercise 2.6.2. Prove that the Eilenberg-Moore category of the monad T associated to the adjunction

(−)u a (−)` : Bop −→ A

consists of Galois closed subsets, i.e., such subsets X of A that satisfy the equality (Xu)` = X.
Using Exercise 2.6.3, prove that extended real numbers are an Eilenberg-Moore category for a suitable

monad.

4.5.12 Exercise (Resolution of a monad in more than two ways) Let A be the category of left can-
cellative monoids and monoid homomorphisms. A monoid (X, i, ◦) is called left cancellative, if the following
holds

x = y, whenever a ◦ x = a ◦ y

for all a, x, y in X.

(1) Prove that every free monoid is left cancellative.

(2) Find a left cancellative monoid that is not free and that is not a group.

(3) Prove that the obvious underlying functor U : A −→ Set has a left adjoint. Denote the left adjoint by F .

(4) Consider the monad T = (T, η, µ) of F a U . Prove that SetT is isomorphic to the variety of all monoids
and monoid homomorphisms.

(5) Prove that Kl(T) is isomorphic to the category of free monoids and their homomorphisms.

(6) Conclude that the monad T can be obtained from at least three different adjunctions.

4.5.13 Exercise (Liftings to X T and generalised Eilenberg-Moore algebras) Suppose T is a monad
on X . Prove that, for a general functor X : K −→X , the following conditions are equivalent:

(1) There is a functor X] : K −→X T such that the triangle

K
X] //

X
""

X T

UT

��

X

commutes.

(2) The functor X has an action of T, i.e., there exists a natural transformation α : T ·X −→ X such that
the diagrams

X
ηX
// TX

α

��

TTX
Tα //

µX

��

TX

α

��

X TX
a
// X

commute.
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Prove that the assignment (X,α) 7→ X] is a bijection. Think of two special cases of the above:

(i) If K is a one-morphism category, then to give a functor X : K −→X is to give an object X of X . The
action α : T ·X −→ X as above is exactly an Eilenberg-Moore algebra on the object X.

(ii) If T is the monad of F a U : A −→X , then U ] : A −→X T is the Eilenberg-Moore comparison functor
KT. And the action corresponding to KT as above is Uε : UFU −→ U .

Given actions (X,α), (X ′, α′), say that a natural transformation τ : X −→ X ′ is a morphism of actions,
provided the square

TX
Tτ //

α

��

TX ′

α′

��

X
τ
// X ′

commutes. Define an assignment τ 7→ τ ], where τ ] should be a natural transformation from X] to X ′].

4.5.14 Exercise (Monoids of endomaps) You know most of the facts that follow. But go through this
exercise nevertheless. It will help immensely in getting intuitions for Exercises 4.5.15 and 4.5.16. Denote, for
sets X and Y , by [X,Y ] the set of all functions f : X −→ Y .

(1) Prove that [X,X] is a monoid w.r.t. composition of functions.

(2) Prove that, for every Z and every f : X −→ Y , there are canonically defined functions

[Z, f ] : [Z,X] −→ [Z, Y ], [f, Z] : [Y, Z] −→ [X,Z]

(3) Define, for every function f : X −→ Y , the set [[f, f ]] as the vertex of a pullback

[[f, f ]]
p1 //

p0

��

[Y, Y ]

[f,Y ]

��

[X,X]
[X,f ]

// [X,Y ]

and prove that [[f, f ]] is a monoid in the canonical way.

Prove that both p0 and p1 are morphisms of monoids.

(4) Prove that

(a) To give a monoid homomorphism M −→ [X,X] is to give an action of M on the set X.

(b) To give a monoid homomorphism M −→ [[f, f ]] is to say that f is equivariant (between the actions on
X and Y , determined by composing the given monoid homomorphism with p0 and p1, respectively).

4.5.15 Exercise (Spitze Klammern in Set) In this exercise we generalise Exercise 4.5.14. The term Spitze
Klammern refers to the German description of the symbols we introduce in this exercise.

(1) Suppose X and Y are sets. Define 〈〈X,Y 〉〉S to be the set Set(S,X) t Y , for any set S. Prove that the
assignment S 7→ 〈〈X,Y 〉〉S can be extended to a functor 〈〈X,Y 〉〉 : Set −→ Set.

(2) Prove that, for any mapping f : X −→ Y and any set Z, one can define natural transformations

〈〈Z, f〉〉 : 〈〈Z,X〉〉 −→ 〈〈Z, Y 〉〉, 〈〈f, Z〉〉 : 〈〈Y,Z〉〉 −→ 〈〈X,Z〉〉

Hint: in defining, e.g., the S-th component 〈〈Z, f〉〉S : 〈〈Z,X〉〉S −→ 〈〈Z, Y 〉〉S, try not to think of elements
too much and use universal properties instead.
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(3) Define, for a map f : X −→ Y and any set S, the set {{f, f}}S as the vertex of a pullback

{{f, f}}S
p1S //

p0S
��

〈〈Y, Y 〉〉S

〈〈f,Y 〉〉S
��

〈〈X,X〉〉S
〈〈X,f〉〉S

// 〈〈X,Y 〉〉S

in Set.

(4) Prove that the assignment S 7→ {{f, f}}S extends to a functor {{f, f}} : Set −→ Set and S 7→ p0S , S 7→ p1S
are natural in S. Hint: you will draw a cube with pullbacks on some faces and you will use a universal
property.

(5) Prove that every 〈〈X,X〉〉 and every {{f, f}} bears canonically the structure of a monad.

Hint: use various universal properties that are involved in definitions of 〈〈X,X〉〉 and of {{f, f}}.

(6) Try to guess what a monad morphism should be (if you fail, peek into Chapter 6) and prove that both
p0 : {{f, f}} −→ 〈〈X,X〉〉 and p0 : {{f, f}} −→ 〈〈Y, Y 〉〉 are monad morphisms.

(7) Prove that

(a) To give a monad morphism T −→ 〈〈X,X〉〉 is to give a T-algebra on the set X.

(b) To give a monad morphism T −→ {{f, f}} is to say that f is a morphism of T-algebras (between
the T-algebras on X and Y , determined by composing the given monad morphism with p0 and p1,
respectively).

4.5.16 Exercise (Spitze Klammern in a general category) Generalise Exercise 4.5.15 to any category
X having small limits.
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Chapter 5

The analysis of the Eilenberg-Moore
comparison functor

Perfection is only attained through true understanding, infinite
patience and precise attention to detail.

Rapee Sagarik, Thai expert on orchids

We will give now a fine analysis of the properties of the Eilenberg-Moore comparison functorKT : A −→X T,
induced by an adjunction F a U : A −→X . We will be interested in the following questions:

(1) When is KT fully faithful?

(2) When does KT have a left adjoint?

We will harvest this analysis in Chapter 6. As we will see, the answers to the above questions will be closely
connected to the existence of coequalisers of certain pairs in A and the behaviour of U with respect to these
coequalisers.

In the whole chapter, we fix an adjunction F a U : A −→ X , we denote by T the monad on X that
corresponds to F a U , and we will relax the notation and write K, instead of KT, for the Eilenberg-Moore
comparison functor.

5.1 Faithfulness and fullness

If K : A −→ X T is fully faithful, then the category A is a “piece” of the category X T, since we will have a
bijection KA,A′ : A (A,A′) −→X T(KA,KA′). Therefore morphisms in A could be understood as morphisms
of T-algebras. Such a property deserves a special name.

5.1.1 Definition An adjunction F a U : A −→ X is said to be of descent type, provided that the induced
Eilenberg-Moore comparison functor is fully faithful.

A functor U : A −→ X is said to be of descent type if has a left adjoint F and the adjunction F a U is of
descent type.

Understanding when K is faithful is very easy:

5.1.2 Proposition The following are equivalent:

(1) K : A −→X T is faithful.

(2) U : A −→X is faithful.

(3) For every A, the counit εA : FUA −→ A is an epimorphism in A .
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Proof. That (1) is equivalent to (2) is trivial: recall that UT ·K = U . Conditions (2) and (3) are equivalent
by Proposition 2.3.1. �

Coming to K being fully faithful, we first prove an easy but useful result.

5.1.3 Lemma For h : FUA −→ A′, the following are equivalent:

(1) The diagram

FUFUA
FUεA //

εFUA
// FUA

h // A′

commutes

(2) The transpose h[ : UA −→ UA′ of h is a T-algebra morphism from KA to KA′, i.e., the diagram

UFUA
UFh[ //

UεA
��

UFUA′

UεA′

��

UA
h[

// UA′

commutes.

Proof. Observe that εA′ · UFh[ = Uh holds always — see the definition of transposes.

Consider now

FUFUA
FUεA // FUA

h // A′

UFUA
UεA // UA

h[ // UA′

FUFUA
εFUA // FUA

h // A′

UFUA
1UFUA// UFUA

Uh // UA′

see Remark 2.2.2. Hence (1) holds iff Uh = h[ · UεA.

Now it is easy to conclude that (1) and (2) are equivalent. �

Observe that, due to naturality, the square

FUFUA
FUεA //

εFUA

��

FUA

εA

��

FUA
εA

// A

commutes for every A. Hence, using Lemma 5.1.3, the transpose ε[A = 1UA is a morphism from KA to KA.
This is obvious and we would not have needed to apply any lemma to conclude it. However, if εA is a coequaliser
of FUεA, εFUA, we derive a result concerning the case when K is fully faithful.

5.1.4 Proposition The following are equivalent:

(1) U : A −→X is of descent type.

(2) For every A, the diagram

FUFUA
FUεA //

εFUA
// FUA

εA // A (5.1)

is a coequaliser in A .
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58 Chapter 5. The analysis of the Eilenberg-Moore comparison functor

Proof. By Lemma 5.1.3, T-algebra morphisms f : KA −→ KA′ are in bijective correspondence with mor-
phisms f ] : FUA −→ A′ coequalising FUεA, εFUA. The latter morphisms are in bijective correspondence with
morphisms k : A −→ A′ such that k · εA = f ] iff εA is a coequaliser. See the diagram

FUFUA
FUεA //

εFUA
// FUA

εA //

f] ""

A

k
��

A′

But the equality k · εA = f ] states that Uk = f . �

As a first application we prove a result concerning colimits for adjunctions of descent type.

5.1.5 Proposition Let X have small coproducts. Suppose that U : A −→ X is of descent type. Then the
following are equivalent:

(1) A has all small colimits.

(2) A has coequalisers of reflexive pairs.

Proof. It clearly suffices to prove that (2) implies (1) and, by Theorem 3.2.2, it suffices to prove that (2)
implies the existence of coproducts in A .

To that end, consider a small family Ai, i ∈ I, in A . Since F a U is of descent type, by Proposition 5.1.4
we know that

FUFUAi
FUεAi //

εFUAi
// FUAi

εAi // Ai

is a coequaliser, for every i ∈ I.
Since X is assumed to have small coproducts, the coproducts

∐
i∈I UAi and

∐
i∈I UFUAi exist in X , and

F preserves these coproducts, since it is a left adjoint.
We can therefore consider the following parallel pair

∐
i∈I FUFUAi

∐
i∈I FUεAi //∐
i∈I εFUAi

//
∐
i∈I FUAi (5.2)

and we observe that it is clearly a reflexive pair: the common splitting is∐
i∈I

FηUAi :
∐
i∈I

FUAi −→
∐
i∈I

FUFUAi

Use triangle identities for that.
The rest of the proof imitates the proof of Theorem 3.2.2. Namely, we prove that to give a cocone for (5.2)

is to give a cocone for Ai, i ∈ I.
Consider the diagram

∐
i∈I FUFUAi

∐
i∈I FUεAi //∐
i∈I εFUAi

//
∐
i∈I FUAi

FUFUAi
FUεAi //

εFUAi
//

inj′i

OO

FUAi εAi
//

inji

OO

Ai

where inji and inj′i denote the respective coproduct injections and where the bottom row is a coequaliser.
Suppose h :

∐
i∈I FUAi −→ A coequalises the top row as in

∐
i∈I FUFUAi

∐
i∈I FUεAi //∐
i∈I εFUAi

//
∐
i∈I FUAi

h // A

FUFUAi
FUεAi //

εFUAi
//

inj′i

OO

FUAi εAi
//

inji

OO
hi

77

Ai

ki

OO
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Then, for every i ∈ I, hi = h · inji coequalises FUεAi and εFUAi . Therefore, every hi induces a unique
ki : Ai −→ A. Since the passage h 7→ (ki) is a bijection, the proof is finished. �

5.1.6 Example Consider the Eilenberg-Moore adjunction FT a UT : X T −→ X . Then the corresponding
Eilenberg-Moore comparison functor is identity, in particular, it is fully faithful. Therefore, the adjunction
FT a UT is always of descent type.

Hence, by Proposition 5.1.4, the diagram

FTUTFTUT(X, a)
F TUTεT(X,a)

//

εT
FTUT(X,a)

// FTUT(X, a)
εT(X,a)

// (X, a) (5.3)

is a coequaliser in X T, for every T-algebra (X, a).
Since εT(X′,a′) = a′ for any T-algebra (X ′, a′) (see the proof of Proposition 4.2.4), we can rewrite (5.3) to the

diagram

(TTX, µTX)
Ta //

µX
// (TX, µX)

a // (X, a) (5.4)

For the reasons so far unclear we will call the coequaliser (5.4) the canonical presentation of the algebra (X, a).

As an application, we can determine now when colimits exist in X T. Recall from Proposition 4.2.5 that the
computation of limits in X T is very easy: one computes a limit in X and the functor UT takes care of the rest
— UT creates the limit, see Remark 4.2.7.

5.1.7 Proposition (Colimits in the Eilenberg-Moore category) Suppose X has coproducts. Then the
following are equivalent:

(1) X T has colimits.

(2) XT has coequalisers of reflexive pairs.

Proof. This is immediate from Proposition 5.1.5 and the fact that FT a UT is of descent type (see Exam-
ple 5.1.6). �

5.1.8 Remark Let us realise that the proof of Proposition 5.1.5 tells us how to compute coproducts in X T

as certain coequalisers. This is typical in varieties: coproducts of algebras are computed by “glueing” things
together — this is what coequalisers do.

The diagram (5.1) will play the lead rôle in our future considerations and we will now analyse the diagram
in somewhat greater detail.

5.1.9 Lemma Consider the diagram

UFUFUA
UFUεA//

UεFUA

// UFUA
UεA // UA (5.5)

in X , resulting when U is applied to (5.1). Then (5.5) is a coequaliser in X , and it remains a coequaliser after
applying any functor to it.

Proof. We will give equational reasons why (5.5) is a coequaliser in X . Since these equations will be preserved
by any functor, the second assertion will immediately follow.

Observe that the diagram (5.5) may be augmented by two arrows to

UFUFUA
UFUεA//

UεFUA

// UFUA
UεA //

ηUFUA
oo

UA
ηUA
oo
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60 Chapter 5. The analysis of the Eilenberg-Moore comparison functor

and that the equalities

UεA · ηUA = 1UA, UFUεA · ηUFUA = ηUA · UεA, UεFUA · ηUFUA = 1UFUA (5.6)

hold. In fact, the first and the last equalities are triangle equalities, the equality in the middle follows from
naturality of η.

Consider now any f : UFUA −→ X coequalising UFUεA and UεFUA. We want to find a unique g : UA −→
X such that the diagram

UFUFUA
UFUεA//

UεFUA

// UFUA
UεA //

f
$$

UA

g

��

X

commutes. Since UεA · ηUA = 1UA, we know that UεA is an epimorphism, hence it suffices to find some g
making the above diagram commutative. We prove that g = f · ηUA will do, i.e., we prove that the triangle

UFUA
UεA //

f

��

UA

ηUA

��

UFUA

f

��

X

commutes.
Consider the diagram

UFUA
UεA //

ηUFUA

��

UA

ηUA

��

UFUFUA
UFUεA //

UεFUA
��

UFUA

f

��

UFUA
f

////

1UFUA

X oo

g

where the top square is the equality in the middle of (5.6), the bottom square commutes since f coequalises
UFUεA and UεFUA, and the left vertical leg is identity due to the equation on the right of (5.6).

Hence g · UεA = f , as desired — the proof is finished. �

5.1.10 Remark Let us go once more through the proof above, pointing out the rôle of individual equalities
in (5.6). From left to right:

(1) The equality UεA · ηUA = 1UA ensures that UεA is an epimorphism (and it will remain such after the
application of any functor, see Exercise 1.4.6).

Hence we need not bother with uniqueness when verifying that UεA is a coequaliser, any mediating
morphism will do. Observe how the mediating mapping g is defined: one simply precomposes f with ηUA,
i.e., we precompose with the split monomorphism, corresponding to UεA.

(2) The equality UFUεA · ηUFUA = ηUA · UεA allows us to “trade” ηUA for UFUεA, i.e., we are “trading”
the splitting for one of the morphisms that f coequalises.

The composite f · UFUεA can be now “traded” for the composite f · UεFUA.

(3) The equality UεFUA · ηUFUA = 1UFUA then ensures that both “trades” above cost us nothing: we can
conclude UεA · g = f .
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Clearly, the considerations of Remark 5.1.10 can be done with an appropriate set of equalities concerning
an arbitrary parallel pair. Since the ideas of Remark 5.1.10 will become a recurring theme, we introduce the
following notions.

5.1.11 Definition A commutative diagram of the form

X1

d1 //

d0

// X0
e // X

is called

(1) An absolute coequaliser , if it is a coequaliser after applying any functor to it.

(2) A split coequaliser , it there exists a splitting , i.e., if there exist morphisms s : X −→ X0, t : X0 −→ X1

such that the following equations

e · s = 1X , d1 · t = s · e, d0 · t = 1X0

hold.

5.1.12 Example (Every split epi is a split coequaliser) Suppose e : X −→ Y is split epi with the split-
ting s : Y −→ X. Then the diagram

X
s·e //
1X
// X

e // Y

is a split coequaliser with the splitting given by s : Y −→ X and t = 1X .

5.1.13 Proposition Any split coequaliser is an absolute coequaliser. Any absolute coequaliser is a coequaliser.

Proof. For the first asertion, go through the proof of Lemma 5.1.9 using Remark 5.1.10. For the second
assertion, consider the image under the identity functor. �

We therefore have the implications

split coequaliser ⇒ absolute coequaliser ⇒ coequaliser

none of which can be reversed:

5.1.14 Example

(1) An absolute coequaliser that is not split.

Consider the diagram

X1

f
//

f
// X0

1X0 // X0

that is clearly an absolute coequaliser. But it is not a split coequaliser, unless f is a split epi.

Hence

∅
∅ //

∅
// {x}

1{x}
// {x}

is an example of an absolute coequaliser in Set that is not a split coequaliser.

(2) A coequaliser (of a reflexive pair) that is not absolute.

Consider the commutative diagram

N + N
[succ,1N]

//

[1N,1N]
// N e // 1

in Set, where N is the set of natural numbers, succ is the successor function, and e is the unique map to
the one-element set 1.

The above diagram is a coequaliser and it is not preserved by the functor Set(N,−) : Set −→ Set. In fact,
the elements (0, 0, 0, . . .) and (0, 1, 2, . . .) do not get merged by Set(N, e).
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A characterisation of absolute coequalisers gives the following result due to Robert Paré [17].

5.1.15 Proposition Consider the diagram

X1

d1 //

d0

// X0
e // X (5.7)

Then the following are equivalent:

(1) Diagram (5.7) is an absolute coequaliser.

(2) Either d0 = d1 and e is an isomorphism, or there exists an n ≥ 1 and an augmentation

X1

d1 //

d0

// X0
e //

t0
oo

...

tn−1

oo

X
s

oo

(5.8)

such that the equations

e · s = 1X (5.9)

d1 · t0 = s · e, d0 · t1 = s · e, d1 · t1 = d0 · t2, d1 · t2 = d0 · t3, . . . , d1 · tn−2 = d0 · tn−1, (5.10)

d0 · tn−1 = 1X0

hold.

Proof. Although the statement may seem horrifying, the proof is relatively easy.

(1) implies (2). To find s, consider the image

X (X,X1)
X (X,d1)

//

X (X,d0)
// X (X,X0)

X (X,e)
// X (X,X)

of (5.7) under the functor X (X,−) : X −→ Set. By assumption, it is a coequaliser in Set, hence, in particular,
the mapping X (X, e) is surjective. Therefore we can find s : X −→ X0 such that e · s = X (X, e)(s) = 1X . We
have established the equality (5.9).

To find t0, . . . , tn−1, consider the image

X (X0, X1)
X (X0,d1)

//

X (X0,d0)
// X (X0, X0)

X (X0,e)
// X (X0, X)

of (5.7) under the functor X (X0,−) : X −→ Set. It is a coequaliser by assumption and the elements 1X0 and
s · e in X (X0, X0) are merged by X (X0, e), since the equalities

X (X0, e)(1X0
) = e · 1X0

= e and X (X0, e)(s · e) = e · s · e = e

hold. Due to the description of coequalisers in Set (see Example 3.1.8), we know that there is a sequence t0, . . . ,
tn−1 in X (X0, X1) witnessing that s ·e and 1X0 are merged by the map X (X0, e) : X (X0, X0) −→X (X0, X).
This gives precisely the equalities in (5.10).

(2) implies (1). By Example 5.1.14, the diagram

X1

d1 //

d0

// X0
e // X

is an absolute coequaliser, whenever d0 = d1 and e is an isomorphism.
It therefore suffices to show that (5.8) is a coequaliser. The reasoning is quite analogous to the analysis in

Remark 5.1.10 above, except for that the “trading” gets longer. Namely: suppose f coequalises d0 and d1 and
define g = f · s. Equalities (5.10) then ensure that f = g · e holds. Since e is an epimorphism by (5.9), g is
necessarily uniquely determined. �
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5.1.16 Remark The diagram (5.8), together with the equalities (5.9) and (5.10) collapses to the notion of a
split coequaliser, if n = 1. Hence the split coequalisers are exactly those absolute coequalisers where s · e and
1X0

get merged in one step.

Coming back to the problem when K is fully faithful, we prove now that requiring every εA to be a particular
coequaliser as in Proposition 5.1.4 is not necessary. It turns out that it suffices that every εA is a coequaliser of
some parallel pair, i.e., that every εA is a regular epimorphism.

5.1.17 Proposition The following are equivalent:

(1) For every A, the diagram

FUFUA
FUεA //

εFUA
// FUA

εA // A

is a coequaliser in A .

(2) For every A, the morphism εA : FUA −→ A is a coequaliser of some parallel pair.

Proof. It suffices to prove that (2) implies (1). Suppose that

A′
h0 //

h1

// FUA
εA // A

is a coequaliser. We prove that, for any k : FUA −→ B, the morphism k coequalises h0, h1 iff k coequalises
FUεA, εFUA.

(1) Suppose k · h0 = k · h1 and consider the unique h : A −→ B with h · εA = k (the universal property of
coequalisers):

A′
h0 //

h1

// FUA
εA //

k
""

A

h

��

B

Then

FUFUA
FUεA //

εFUA
// FUA

εA // A
h // BOO

k

and k coequalises FUεA, εFUA.

(2) Suppose k · FUεA = k · εFUA. Then there exists a unique h : FUA −→ FUB such that the diagram

FUFUFUA
FUFUεA//

FUεFUA

// FUFUA
FUεA //

FUk %%

FUA

h
��

FUB

commutes (use that UεA is an absolute coequaliser of UFUεA, UεFUA).

Therefore

FUA′
FUh0 //

FUh1

// FUFUA
FUεA // FUA

h // FUBOO

FUk

commutes, since the diagram

A′
h0 //

h1

// FUA
εA // A

commutes (it is assumed to be a coequaliser).
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The diagram

FUA′
FUh0 //

FUh1

//

εA′

��

FUFUA
FUk //

εFUA

��

FUB

εB

��

A′
h0 //

h1

// FUA
k // B

commutes by naturality of ε.

Use that εA′ is epi (it being a coequaliser), hence k · h0 = k · h1.

�

5.1.18 Remark Let us summarise all the facts that we learned about the commutative diagram

FUFUA
FUεA //

εFUA
// FUA

εA // A (5.11)

in A .

(1) The parallel pair

FUFUA
FUεA //

εFUA
// FUA (5.12)

is clearly reflexive, the common splitting is given by FηUA : FUA −→ FUFUA. To wit: the equalities
FUεA · FηUA = 1FUA and εFUA · FηUA = 1FUA hold by the triangle equalities for F a U .

(2) The image of the diagram under U is a split coequaliser , hence an absolute coequaliser in X .

Conditions (1) and (2), put together, will be phrased as follows:

Diagram (5.12) is a reflexive U -split pair (reflexive U -absolute pair , respectively).

In general: a reflexive U -split pair is a reflexive pair in A , whose image under U can be completed to a split
coequaliser in X . Analogously, a reflexive U -absolute pair is a reflexive pair in A , whose image under U can
be completed to an absolute coequaliser in X .

5.2 The left adjoint to the comparison functor

Proceeding in our analysis, we address now the question when K has a left adjoint. It turns out that the answer
is related to the existence of coequalisers of certain pairs in A .

We will start with a result that slightly generalises Lemma 5.1.3.

5.2.1 Lemma Suppose (X, a) is a T-alegbra. For h : FX −→ A′, the following are equivalent:

(1) The diagram

FUFX
Fa //

εFX
// FX

h // A′

commutes.

(2) The transpose h[ : X −→ UA′ of h is a T-algebra morphism from (X, a) to KA′, i.e., the diagram

UFX
UFh[ //

a

��

UFUA′

UεA′

��

X
h[

// UA′

commutes.
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Proof. Observe that εA′ · UFh[ = Uh holds always — see the definition of transposes.

Consider now

FUFX
Fa // FX

h // A′

UFX
a // UA

h[ // UA′

FUFX
εFX // FX

h // A′

UFX
1UFX // UFX

Uh // UA′

see Remark 2.2.2. Hence (1) holds iff Uh = h[ · a holds.

Now it is easy to conclude that (1) and (2) are equivalent. �

5.2.2 Remark Observe that Lemma 5.1.3 follows from Lemma 5.2.1 by considering the T-algebra KA =
(UA,UεA) in place of (X, a).

The characterisation of the existence of an adjunction L a K now follows immediately.

5.2.3 Proposition The following are equivalent:

(1) K : A −→X T has a left adjoint.

(2) For every algebra (X, a), a coequaliser of the pair

FUFX
Fa //

εFX
// FX

exists in A .

Proof. (1) implies (2). Suppose L a K holds. Since UT ·K = U , we may assume that L · FT = F (by the
essential uniqueness of left adjoints). Take a T-algebra (X, a) and consider its canonical presentation

(TTX, µTX)
Ta //

µX
// (TX, µX)

a // (X, a)

of (X, a) and recall it is a coequaliser in X T, see Example 5.1.6. The functor L, being a left adjoint, sends this
coequaliser to a coequaliser

L(TTX, µTX)
LTa //

LµX

// L(TX, µX)
La // L(X, a)

in the category A .

We will prove that the parallel pairs

L(TTX, µTX)
LTa //

LµX

// L(TX, µX) FUFX
Fa //

εFX
// FX

are the same.

Since L · FT = F , the equation L(TX, µX) = LFTX = FX holds. The equation L(TTX, µTX) = FUFX
follows in a similar way. Since LTa = LUTFTa = LFTa, (UT is identity on morphisms), the equality LFTa = Fa
follows. Since µX is the transpose of 1TX : TX −→ UT(TX, µX) under FT a UT, LµX is the transpose of
1UFX : UFX −→ UFX under F a U . The latter transpose is precisely εFX .

(2) implies (1). Suppose (2) holds. Fix a T-algebra (X, a) and denote by

FUFX
Fa //

εFX
// FX

c(X,a)
// L0(X, a)

the coequaliser that is assumed to exist. We will prove that L0(X, a) is a free object on (X, a) w.r.t. K.
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66 Chapter 5. The analysis of the Eilenberg-Moore comparison functor

To conclude the proof, we need to define the “insertion of generators”, i.e., we need to define α(X,a) :
(X, a) −→ KL0(X, a) and extablish its universal property. Let α(X,a) be the unique morphism in the diagram

(TTX, µTX)
Ta //

µX
// (TX, µX)

a //

Kc(X,a) &&

(X, a)

α(X,a)

��

KL0(X, a)

defined by the universal property of the coequaliser in the top row.
Let A be any object of A and let f : (X, a) −→ KA be a morphism in X T. By Lemma 5.2.1 we know

that the morphism f ] : FX −→ A coequalises Fa and εFX and it therefore defines a unique morphism
f∗ : L0(X, a) −→ A such that f∗ · c(X,a) = f ]:

FUFX
Fa //

εFX
// FX

c(X,a)
//

f]
$$

L0(X, a)

f∗

��

A

To prove that Kf∗ · α(X,a) = f , consider the following diagram

(TTX, µTX)
Ta //

µX
// (TX, µX)

a //

Kc(X,a) &&

(X, a)

α(X,a)

��

KL0(X, a)

Kf∗

��

KA//

Kf]

in X T, where the upper triangle commutes by the definition of α(X,c) and the lower triangle commutes by the
definition of f∗.

The prove that Kf∗ · α(X,a) = f will be finished (using the universal property of coequalisers), when we
show that the triangle

(TX, µTX)
a //

Kf] &&

(X, a)

f

��

KA

commutes in X T, or, since UT is faithful, when we show that the triangle

UT(TX, µTX)
UTa //

UTKf] ''

UT(X, a)

UTf
��

UTKA

commutes in X . The last triangle is, due to UT ·K = U , the triangle

TX
a //

f] ""

X

f

��

UA

and it commutes, using the definition of f ] and the fact that f : (X, a) −→ (UA,UεA) is a morphism of
T-algebras:

UFX
a //

UFf

�� f] $$

X

f

��

UFUA
UεA

// UA
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The proof is finished. �

5.2.4 Corollary Suppose A has coequalisers of reflexive U -split pairs. Then K : A −→X T has a left adjoint.

Proof. This is easy: for every T-algebra (X, a), the pair

FUFX
Fa //

εFX
// FX

required for the existence of a left adjoint to K in Proposition 5.2.3 is reflexive. The common splitting is
FηX : FX −→ FUFX.

Moreover, the image of the above pair under U can be completed to a split coequaliser

UFUFX
UFa //

UεFX

// UFX
a // X

the splitting being ηX : X −→ UFX and ηUFX : UFX −→ UFUFX. �

Having established the necessary and sufficient conditions for the existence of a left adjoint L of K, we want
to have explicit formulas for the unit and the counit of L a K. The formulas follow immediately from the proof
of Proposition 5.2.3. Let us fix the notation

FUFX
Fa //

εFX
// FX

c(X,a)
// L(X, a) (5.13)

for the coequaliser defining L(X, a).

5.2.5 Proposition (The unit of L a K) Suppose (X, a) is a T-algebra. The unit α(X,a) of L a K is the
unique morphism in the diagram

(TTX, µTX)
Ta //

µX
// (TX, µX)

a //

Kc(X,a) &&

(X, a)

α(X,a)

��

KL(X, a)

defined by the universal property of the coequaliser in the top row.

Proof. This is easy: the assertion is exactly how the transpose of 1L(X,a) : L(X, a) −→ L(X, a) has been
defined in Proposition 5.2.3. �

5.2.6 Proposition (The counit of L a K) Suppose A is an object of A . Then the counit βA of L a K is
the unique morphism in the diagram

FUFUA
FUεA //

εFUA
// FUA

cKA //

εA
$$

LKA

βA
��

A

defined by the universal property of the coequaliser in the top row.

Proof. This is easy: the assertion is exactly how the transpose of 1KA : KA −→ KA has been defined in
Proposition 5.2.3. �
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5.3 Exercises

5.3.1 Exercise (A sufficient condition for the existence of reflexive coequalisers in X T) Suppose that
F a U : A −→ X is an adjunction. Denote by T = (T, η, µ) the respective monad on X . Prove ([13], Corol-
lary 3):

Suppose X has and T : X −→X preserves coequalisers of reflexive pairs. Then X T has coequalisers of
reflexive pairs.

5.3.2 Exercise (Zig-zags of John Isbell) A different approach to analysing when K is fully faithful is in
terms of zig-zags, see [9].

We say that the functor U : A −→ X satisfies the short zig-zag condition provided that for any short
zig-zag

A1

h1

~~

A2 A3
h2oo

h3~~

A4

in A , whenever its image
UA1

Uh1

{{

f

##

UA2

g
##

UA3
Uh2oo

Uh3{{

UA4

under U has a fill-in, denoted by the dotted arrows, then the morphism g ·Uh1 = Uh3 · f : UA1 −→ UA4

has the form Uh for some h : A1 −→ A4.

Prove the following:

(1) The functor UT : X T −→X satisfies the short zig-zag condition.

(2) Suppose U : A −→ X satisfies the short zig-zag condition and K : B −→ A is a fully functor. Then
UK : B −→X satisfies the short zig-zag condition.

Conclude that if U is of descent type, then it satisfies the short zig-zag condition.

(3) Prove that if U is faithful, then U satisfies the short zig-zag condition.

Hint: to prove K is full, consider h : KA′ −→ KA and the short zig-zag

A′

1A′

~~

A′ FUA′
εA′oo

εA·Fh
{{

A

Conclude that, for a faithful U : A −→X , U is of descent type iff U satisfies the short zig-zag condition.
Generalise the above to zig-zags of arbitrary length.
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Chapter 6

Beck’s Theorem

Write down the evident diagram, apply the obvious
argument, and obtain the usual result.

Phreilambud

In this chapter we will summarise what we know about the Eilenberg-Moore and Kleisli comparison functors
for an adjunction F a U : A −→X and answer the following questions:

(1) When is KT an equivalence?

(2) When is KT an isomorphism?

(3) When is KT an equivalence?

(4) When is KT an isomorphism?

The results for KT — the so-called Beck’s Theorems — will be stated in terms of the behaviour of U w.r.t.
coequalisers of pairs studied on Chapter 5, see Sections 6.1 and 6.2 below. The results for functor KT are fairly
easy and they are summarised in Section 6.3 below.

6.1 Recognising algebras up to equivalence

Beck’s monadicity theorems are results characterising situations when the Eilenberg-Moore comparison functor
is an equivalence of categories. Since a functor is an equivalence iff it is an adjoint equivalence, we require
the comparison to have a left adjoint and the unit and the counit should be natural isomorphisms. Since the
existence of a left adjoint to the comparison functor is stated in terms of certain coequalisers, we expect the
monadicity theorem to be stated in terms of these coequalisers. This is indeed the case.

6.1.1 Definition Say that F a U : A −→ X is a monadic adjunction, if the comparison functor K : A −→
X T is an equivalence of categories.

A functor U : A −→ X is called monadic, provided it has a left adjoint F and the adjunction F a U is
monadic.

6.1.2 Remark Some authors define monadic functors in the way that the comparison functor in an isomor-
phism. Since we take the stance that two categories are “abstractly the same”, whenever they are equivalent,
we stated monadicity in terms of K being an equivalence of categories. We will address the problem when K
is an honest isomorphism in Section 6.2 below.

A perhaps surprising is the following example of a monadic functor.

6.1.3 Example (Fully faithful right adjoints are monadic) Suppose F a U : A −→X is such that U is
fully faithful. We claim that F a U is a monadic adjunction.
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70 Chapter 6. Beck’s Theorem

Denote by T = (T, η, µ) the resulting monad on X . By Proposition 2.3.1, U is fully faithful iff every εA is
an isomorphism. Therefore µX = UεFX is an isomorphism for every X, and we have ηT = Tη = µ−1 from the
monad axioms.

We prove that K : A −→X T is an equivalence of categories, using Proposition 2.4.3:

(1) K is fully faithful.

Since every εA is an isomorphism, it is a regular epimorphism (Example 5.1.12 expresses εA as even a
split, hence absolute, coequaliser). Now use Proposition 5.1.17.

(2) K is e.s.o.

Suppose (X, a) is a T-algebra. We first prove that a : TX −→ X is an isomorphism (having necessarily
ηX : X −→ TX as an inverse). To that end, consider the naturality square

TX
a //

ηTX

��

X

ηX

��

TTX
Ta
// TX

and use ηT = Tη to replace it by the commutative square

TX
a //

TηX
��

X

ηX

��

TTX
Ta
// TX

whose first-down-then-right passage gives identity, since (X, a) is a T-algebra. Thus ηX · a = 1TX as
desired.

Define A = FX. Then KA = (UA,UεA) = (UFX,UεFX) = (TX, µX) is a T-algebra, isomorphic to
(X, a) by virtue of the T-algebra morphism a:

TTX
Ta //

µX

��

TX

a

��

TX
a
// X

6.1.4 Remark The above example gives us a plethora of monadic functors: every full subcategory U : A −→
X , where U has a left adjoint, is monadic. The examples include:

(1) The full inclusion of all compact Hausdorff spaces into all (completely regular, if you wish) topological
spaces. The left adjoint is given by the Stone-Čech compactification of a (completely regular) topological
space.

(2) The full inclusion of the category of all posets into the category of all preorders and monotone maps. The
left adjoint is given by antisymmetrisation of a preorder.

(3) The full inclusion of the category of all Abelian groups into the category of all groups and group homo-
morphisms. The left adjoint is given by the quotient by a commutator subgroup.

(4) And many others. . .

Of course, our main example of a monadic functor should be UT : X T −→ X . We will introduce the
following property and prove that UT has it.

6.1.5 Definition We say that U : A −→ X reflects isomorphisms, h is an isomorphism in A , whenever Uh
is an isomorphism in X .
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6.1.6 Example (Properties of UT) We state now quite trivial but very important properties of the functor
UT : X T −→X .

(1) UT reflects isomorphisms. Suppose f : (X, a) −→ (X ′, a′) is such that UTf = f : X −→ X ′ is an
isomorphism in X . Denote by g : X ′ −→ X the inverse of f . It suffices to prove that the square

TX ′
Tg
//

a′

��

TX

a

��

X ′
g
// X

commutes. Since Tf is an isomorphism (having Tg as an inverse), it is an epimorphism. It therefore
suffices to prove that Tf equalises both paths in the above square. This is trivial:

TX
Tf
//

a

��

TX ′
Tg
//

a′

��

TX

a

��

��

1TX

X
f
// X ′

g
// XOO

1X

(2) X T has and UT preserves coequalisers of all UT-absolute pairs.

Suppose that

(X, a)
d1 //

d0

// (Y, b)

is a parallel pair in X T such that

X
d1 //

d0

// Y
e // Z

is an absolute coequaliser in X .

We proceed in several steps

(a) First we prove that there is a structure of a T-algebra on Z, such that e becomes a morphism of
T-algebras. Consider the diagram

TX
Td1 //

Td0

//

a

��

TY
Te //

b
��

TZ

c

��

X
d1 //

d0

// Y
e // Z

where the top row is a coequaliser and define c : TZ −→ Z as the unique mediating arrow, using the
universal property of coequalisers.

Clearly, e will become a morphism of T-algebras as soon as we prove that c : TZ −→ Z satisfies the
axioms of Eilenberg-Moore algebras.

(i) To prove that c · ηZ = 1Z , we consider the diagram

X
d1 //

d0

//

ηX

��

Y
e //

ηY

��

Z

ηZ

��

TX
Td1 //

Td0

//

a

��

TY
Te //

b
��

TZ

c

��

X
d1 //

d0

// Y
e // Z
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and, by using the fact that both (X, a) and (Y, b) are algebras, we conclude that c · ηZ = 1Z by
the universal property of coequalisers.

(ii) To prove c · Tc = c · µZ , we consider the diagram

TTX
TTd1 //

TTd0

//

µX

��

Ta

��

TTY
TTe //

µY

��

Tb

��

TTZ

µZ

��

Tc

��

TX
Td1 //

Td0

//

a

��

TY
Te //

b
��

TZ

c

��

X
d1 //

d0

// Y
e // Z

where the top row is a coequaliser and use the universal property of coequalisers again.

(b) We prove that e : (Y, b) −→ (Z, c) is a coequaliser in X T. It is clear from the construction that as
soon as we prove it, we will also prove that UT preserves this coequaliser.

Suppose therefore that e′ : (Y, b) −→ (Z ′, c′) coequalises d0 and d1 in X T. Then, in particular, e′

coequalises d0 and d1 in X . Thus there exists a unique z : Z −→ Z ′ such that the diagram

X
d1 //

d0

// Y
e //

e′   

Z

z′

��

Z ′

commutes.

It remains to be proved that z′ is a morphism of algebras. By considering the diagram

TX
Td1 //

Td0

//

a

��

TY
Te //

b

��

TZ
Tz′ //

c

��

TZ ′

c′

��

X
d1 //

d0

// Y
e
// Z

z′
// Z ′

we see that Te is epi (it being a coequaliser). Therefore the square

TZ
Tz′ //

c

��

TZ ′

c′

��

Z
z′
// Z ′

commutes as desired.

(3) Quite analogously to the above, one can prove that X T has and UT preserves colimits of all UT-absolute
diagrams (not just coequalisers of UT-absolute pairs).

That is, we want to prove that for every diagram D : D −→X T such that UTD : D −→X has a colimit
(Z, injd) that is preserved by any functor, a colimit (Ẑ, înjd) exists in X T and UT preserves it.

Perform the same calculations as for coequalisers above, using this time a colimit cocone of TUTD to
define the algebra structure c on Z:

TXd

T injd //

ad

��

TZ

c

��

Xd
injd

// Z

where we have denoted Dd = (Xd, ad).
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6.1.7 Remark Observe that if E : A −→ X T is any equivalence of categories, then UT · E reflects isomor-
phisms. Moreover, A has colimits of all (UT · E)-absolute diagrams and UT · E preserves them.

Hence the properties of UT from Example 6.1.6 are stable under composition with equivalence of categories.
In particular, every monadic functor must have the above two properties.

We are now ready to state and prove the main result of this section.

6.1.8 Theorem (Beck’s Monadicity Theorem [5]) For U : A −→X , the following are equivalent:

(1) U is monadic.

(2) U has a left adjoint, reflects isomorphisms, and A has colimits of all U -absolute diagrams and U preserves
these coequalisers.

(3) U has a left adjoint, reflects isomorphisms, and A has coequalisers of all U -absolute pairs and U preserves
these coequalisers.

(4) U has a left adjoint, reflects isomorphisms, and A has coequalisers of reflexive U -absolute pairs and U
preserves these coequalisers.

(5) U has a left adjoint, reflects isomorphisms, and A has coequalisers of reflexive U -split pairs and U preserves
these coequalisers.

Proof. For the proof that (1) implies (2), recall from Example 6.1.6 that UT reflects isomorphisms, that X T

has colimits of all UT-absolute diagrams and that UT preserves these colimits. Since we assume that K is an
equivalence of categories and since U = UT ·K holds, we proved (2).

That (2) implies (3) implies (4) implies (5) is trivial.

(5) implies (1). Since A has coequalisers of reflexive U -split pairs, there is an adjunction L a K, see Corol-
lary 5.2.4. We will prove that both the unit α and the counit β of L a K are isomorphisms. This will finish the
proof.

Recall the definition of α and β of L a K from Propositions 5.2.5 and 5.2.6: see the diagrams

(TTX, µTX)
Ta //

µX
// (TX, µX)

a //

Kc(X,a) &&

(X, a)

α(X,a)

��

KL(X, a)

FUFUA
FUεA //

εFUA
// FUA

cKA //

εA
$$

LKA

βA
��

A

(6.1)

where the top rows are coequalisers.

(i) α(X,a) is an isomorphism.

By applying UT to the diagram on the left of (6.1), and using UT ·K = U , we obtain a diagram

TTX
Ta //

µX
// TX

a //

Uc(X,a) %%

X

α(X,a)

��

UL(X, a)

in X .

The top row is a coequaliser, since UT preserves coequalisers of UT-absolute pairs by Example 6.1.6.

Since c(X,a) is a coequaliser of a reflexive U -split pair Fa, εFX (see the proof of Proposition 5.2.3), and
since U preserves such coequalisers, Uc(X,a) is also a coequaliser of Ta and µX .

Since coequalisers are essentially unique, α(X,a) = UTα(X,a) : UT(X, a) −→ UTKL(X, a) is an isomor-
phism.

Since UT reflects isomorphisms by Example 6.1.6, α(X,a) : (X, a) −→ KL(X, a) is an isomorphism in X T.

Jiřı́ Velebil: cats & monads 73 22 June 2017, 14:56



74 Chapter 6. Beck’s Theorem

(ii) βA is an isomorphism.

By applying U to the diagram on the right of (6.1), we obtain

UFUFUA
UFUεA//

UεFUA

// UFUA
UcKA //

UεA %%

ULKA

UβA
��

UA

Now UcKA is a coequaliser of UFUεA and UεFUA, since U preserves coequalisers of reflexive U -split pairs.
But UεA is also a coequaliser of UFUεA and UεFUA by Lemma 5.1.9. Therefore UβA is an isomorphism,
since coequalisers are essentially unique.

Since U reflects isomorphisms, βA : LKA −→ A is an isomorphism.

�

6.1.9 Remark It is easy to see that in proving (5) implies (1) in Theorem 6.1.8 one could assume that U
reflects coequalisers of reflexive U -split pairs in lieu of assuming U reflects isomorphisms. This is all one needs
when proving that the unit α(X,a) of L a K is an isomorphism.

In general, we say that U : A −→ X reflects a colimit of D : D −→ A , provided that every cocone
(A, injd) for D, such that (UA,U injd) is a colimit of U ·D, is already a colimit of D.

However, one can readily seen the following

Suppose U preserves and reflects a colimit of D. Then U reflects isomorphisms.

Thus, conditions (3)–(5) of Theorem 6.1.8 could be rewritten as follows:

U has a left adjoint, A has coequalisers of (∗)-pairs and U preserves and reflects these coequalisers.

where (∗) stands for the respective class of pairs in the individual conditions of Theorem 6.1.8.
The definition of reflection of limits is dual to reflection of colimits. Observe that the functor UT (hence

every monadic functor) reflects limits. This is clear from Proposition 4.2.5.

6.1.10 Remark The reader may be slightly dissapointed that Beck’s Theorem does not fully support the
intuition we have from Universal Algebra: where are the quotients of congruences as we know them? Namely,
the parallel pair

TTX
Ta //

µX
// TX

only tells us which pairs should our equivalence relation contain.
This discrepancy is due to the big generality of Beck’s Theorem — the theorem works over an arbitrary

category X . Congruences play a major rôle in Duskin’s variant of Beck’s Theorem where the category X is
supposed to “look more like sets”, see [8].

6.2 Recognising algebras up to isomorphism

We want to strengthten the results of Section 6.1 and characterise adjunctions F a U : A −→ X where K is
an isomorphism of categories.

6.2.1 Definition Say that F a U : A −→ X is a precisely monadic adjunction, if the comparison functor
K : A −→X T is an isomorphism of categories.

A functor U : A −→ X is called precisely monadic, provided it has a left adjoint F and the adjunction
F a U is precisely monadic.

22 June 2017, 14:56 74 Jiřı́ Velebil: cats & monads



6.2. Recognising algebras up to isomorphism 75

6.2.2 Remark A closer look at Example 6.1.6 reveals that the behaviour of UT w.r.t. colimits of UT-absolute
diagrams is similar to its behaviour w.r.t. limits that we have observed in Remark 4.2.7. Namely, UT creates
colimits of all UT-absolute diagrams.

Let us spell out creation of colimits in detail.

6.2.3 Definition U : A −→X is said to create a colimit of D : D −→ A , provided that for a colimit (C, injd)

of U ·D, there is a unique cocone (Ĉ, înjd) for D such that UĈ = C and U înjd = injd and, moreover, (Ĉ, înjd)
is a colimit of D.

6.2.4 Theorem (Precise Monadicity Theorem) For U : A −→X , the following are equivalent:

(1) U is precisely monadic.

(2) U has a left adjoint and creates colimits of all U -absolute diagrams.

(3) U has a left adjoint and creates coequalisers of all U -absolute pairs.

(4) U has a left adjoint and creates coequalisers of reflexive U -absolute pairs.

(5) U has a left adjoint and creates coequalisers of reflexive U -split pairs.

Proof. For proving that (1) implies (2), recall from Example 6.1.6 that UT creates colimits of UT-absolute
diagrams. If K is an isomorphism, then U = UT ·K creates colimits of U -absolute diagrams.

Implications (2) implies (3) and (3) implies (4) and (4) implies (5) are trivial.

(5) implies (1). We will prove that K is fully faithful and bijective on objects.

(i) First we prove a useful auxilliary result.

For every T-algebra (X, a), we know that the diagram

UFUFX
UFa //

UεFX

// UFX
a // X

is a coequaliser in X (it is, in fact, a split coequaliser). Moreover, the above coequaliser is a coequaliser
of the image under U of the reflexive pair

FUFX
Fa //

εFX
// FX

in A . Since U creates coequalisers of such pairs, there is a unique â : FX −→ X∗ such that Uâ = a and

FUFX
Fa //

εFX
// FX

â // X∗

is a coequaliser in A . We claim that

UX∗ = X, â = εX∗

The first equality follows from Uâ = a. The second follows from the fact that the diagrams

UFUX∗
Uâ // UX∗

UX∗

ηUX∗

OO UFX
a // X

X

ηX

OO

are the same: UX∗ = X and Uâ = a hold. Since (X, a) is a T-algebra, both diagrams above commute.
Therefore â = (1X)] = εX∗ .
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(ii) K is fully faithful.

Bu choosing (X, a) = (UA,UεA) in (i) above, we obtain a coequaliser

FUFUA
FUεA //

εFUA
// FUA

εA // A

proving that K is fully faithful by Proposition 5.1.4.

(iii) K is bijective on objects.

In (i) we proved that (X, a) = (UX∗, UεX∗) = KX∗ for a unique X∗ in A .

�

6.3 The characterisation of the Kleisli situation

Let us observe that the recognition of F a U : A −→ X as essentially (or, precisely) the Kleisli adjunction,
i.e., when the Kleisli comparison functor KT : Kl(T) −→ A is an equivalence (or, an isomorphism) of categories,
is very easy.

6.3.1 Proposition The following are equivalent:

(1) KT : Kl(T) −→ A is an equivalence of categories.

(2) F is e.s.o.

Proof. Observe that KT : Kl(T) −→ A is always a fully faithful functor. This follows from the diagram

Kl(T)(X,X ′) X (X,UFX ′)
b−1

X,FX′
// A (FX,FX ′)

OO

(KT)X,X′

Hence, by Proposition 2.4.3, KT is an equivalence iff KT is e.s.o. But the latter condition is equivalent to F
being e.s.o. �

6.3.2 Proposition The following are equivalent:

(1) KT : Kl(T) −→ A is an isomorphism of categories.

(2) F is bijective on objects.

Proof. Since KT is fully faithful, it will be an isomorphism of categories iff it is bijective on objects. The
latter means precisely that F is bijective on objects. �

6.4 Exercises

6.4.1 Exercise (A composition of monadic functors need not be monadic) Let Ab denote the cate-
gory of Abelian groups and their homomorphisms. Denote by U : Ab −→ Set the usual underlying functor, and
denote by E : TorFree −→ Ab the inclusion of the full subcategory spanned by torsion-free groups. (A group is
torsion-free if it has no elements of finite order.)

Prove:

(1) Both E and U are monadic functors. Hint: the left adjoint of E sends the group A to the factor A/C where
C is the subgroup of elements of finite order in A. Since E is fully faithful, it is monadic by Example 6.1.3.
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(2) The composite UE : TorFree −→ Set is not monadic. Hint: denote by (T, η, µ) the monad given by U and
consider the split coequaliser

TT2
Tx //

µ2

// T2
x // 2

in Set, where (2, x) is the two-element Abelian group. The above coequaliser cannot be lifted to TorFree
since the two-element group is not torsion-free.

6.4.2 Exercise (A cancellation result for monadic functors) Suppose a chain

A
U
//⊥ X

Foo

U ′
//⊥ X ′

F ′oo

of adjunctions is given. Denote by T = (T, η, µ) the monad of F a U and by T′ = (T ′, η′, µ′) the monad of
F ′ a U ′. Prove the following ([6], Section 7):

(1) Suppose U ′ ·U is monadic. Then U is of descent type and the comparison functor KT : A −→X T has a
left adjoint.

(2) Suppose U ′ · U is monadic and suppose U ′ reflects isomorphisms. Then U is monadic.

Conclude that if U ′ · U and U ′ are monadic, so is U .

6.4.3 Exercise (An easy composition result for monadic functors) Suppose a chain

A
U
//⊥ X

Foo

U ′
//⊥ X ′

F ′oo

of monadic adjunctions is given. Prove the following ([21], Remark 4.2):

Suppose T = UF : X −→X preserves all coequalisers

F ′U ′F ′U ′X
F ′U ′ε′X//

ε′
F ′U′X

// F ′U ′X
ε′X // X

in X . Then U ′ · U is monadic.

6.4.4 Exercise (A not so easy composition result for monadic functors) Suppose a chain

A
U
//⊥ X

Foo

U ′
//⊥ X ′

F ′oo

of monadic adjunctions is given. Prove ([14], ZHD Lemma):

The composite U ′ · U is monadic, whenever X is a ZHD category.

A category X is ZHD (it stands for zero homological dimension), provided that all objects X of X are either

(1) projective w.r.t. regular epis, i.e., for every regular epimorphism e : A −→ B and every f : X −→ B there
exists (not necessarily unique) g : X −→ A making the triangle

A
e // B

X

f

>>

g

``

commutative,

or

(2) artificially terminal , i.e., X is a terminal object and every f : X −→ X ′ is an isomorphism.

Observe that the category Set is ZHD.
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strong, 52
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unit monad, 51
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definition of, 10
Godement calculus, 12
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Precise Monadicity Theorem, 75
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limit, 35
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product
definition of, 31
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split epi

definition of, 12
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split epimorphism
definition of, 12
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definition of, 12
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terminal object
definition of, 31
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Truncated Adjoint Functor Theorem, 42
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of a monad, 44
of an adjunction, 20
of the comparison adjunction, 67

weakly free object, 36

Yoneda Lemma, 14

zig-zag condition, 68
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