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Abstract

Basic concepts and results of the theory of domains are generalized from (special) posets
to (special) categories, following the ideas of D. Lehmann, S. Abramsky and J. Adamek.
For example, the rather technical but fruitful concept of approximable relation (as a
presentation of a Scott continuous function) is shown to correspond to a more natural
concept of flat distributor (as a presentation of a finitary functor) in Chapter 4. The
fixed point calculus which enables recursive definitions of domains is extended to finitary
functors by examining a limit-colimit coincidence of chains of finitary adjunctions. The
basic result that every locally continuous functor has a least fixed point is generalized
from domains as posets to domains as categories (Chapter 8). And universal domains are
shown to have their categorical counterparts, see Chapter 7.
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Chapter 1

Preface

1.1 Passage from Posets to Categories

This work is based on an observation that categories can be viewed as generalized posets.
The question arises which results known from posets can be generalized to categories.
The subject of this text is to find out how far one can go in extending Domain Theory
(used in formal semantics of programming languages) to category theory.

The passage from posets to categories in domain theory can be of practical importance.
In a domain (X, C), the relation z C y denotes the fact that element z “approximates”
element y. In a poset one cannot distinguish different “ways” how x relates to y. The con-
cept of a category overcomes this problem: a witness of the approximation is a morphism
f:x—y.

On the other hand, categorical generalizations can bring new insight into Domain
Theory. For example, one can find new, efficient proofs of classical results, or classical
definitions can be restated in a modern, condensed way.

Let us point out that the investigation of domains as categories instead of posets has
been started by Daniel Lehmann [Leh76] and Samson Abramsky [Ab83] where the authors
justify the use of categories for studying non-determinism.

The basic natural generalizations are as follows:

poset — category,

DCPO — category with filtered colimits,
algebraic DCPO — finitely accessible category,
pointed algebraic DCPO + generalized domain

(=finitely accessible category with an initial object),
continuous map +— finitary functor.

Daniel Lehmann chose a category having colimits of countable chains as a basic con-
cept of a domain in [Leh76], Jifi Addmek, on the other hand, defined a Scott complete
category in [Ad97] as a finitely accessible category which satisfies additional properties
(see Definition 4.2.1). The latter approach to domains, i.e. that a domain is a category
having colimits of filtered diagrams has the following advantage:

Filtered diagrams in category theory provide a natural generalization of directed
sets in the theory of posets. Directed-complete posets (DCPOs) in Domain Theory
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Chapter 1. Preface

form a starting point for definitions of theoretically important notions of algebraic
DCPOs and Scott domains.

Another advantage of Adamek’s definition is the fact that there is a link of two subjects:
the study of Scott complete categories is a study of (rather special) accessible categories.
Theory of accessible categories form a well-established part of category theory by now.
It originated in the work of Charles Ehresmann [Eh68] as a study of categories which
are models of sketches, i.e. categories which are “axiomatized”. Logical aspects of ac-
cessible categories are stressed in the monograph [MP89]. Viewing accessible categories
as domains leads to interesting questions on accessible categories which are inspired by
Domain Theory, e.g. the study of adjoint pairs of accessible functors between accessible
categories (see Chapter 4).

1.2 Main Results of the Dissertation

Structure of the text. The thesis is divided into eight chapters which are divided
into sections. Definitions, theorems etc. are numbered within each section and they are
referred to by their number. End of proofs, remarks and examples is denoted by 0. At
the end of the text there is index and list of references. Definitions and results which are
not original are referred to. If there is no reference, they are, up to my best knowledge,
original.

Here is a brief summary of the thesis:

Chapters 2 and 3. These chapters are excerpts from the standard literature on Domain
Theory (Chapter 2) and Category Theory (Chapter 3).

Chapter 4. This chapter contains categorical generalizations of basic classical notions
introduced in Chapter 2.

The notion of a Scott complete category has been defined by Jiti Addmek in [Ad97].
Adamek investigates there the basic properties of Scott complete categories which I sum
up here.

Scott complete categories are a generalization of Scott domains. Scott domains them-
selves are special pointed algebraic DCPQs. Pointed algebraic DCPOs have their natural
categorical counterpart in finitely accessible categories with initial objects. Following the
paper [TrV97], I call such categories generalized domains.

The crux of Chapter 4 lies in representation theorems. There are two main results

(published in [Ve97b]):

1. Theorem 4.3.12 states that the 2-quasicategory of generalized domains, left adjoints
which have a finitary right adjoints and natural transformations is biequivalent to a
legitimate 2-category of normal functors.

This generalizes the well-known fact from Domain Theory: embedding-projection
pairs between Scott domains correspond to CUSL embeddings between their posets
of compact elements (see e.g. [SLG94], Chapter 4, Proposition 5.11).

The concept of an embedding-projection pair between domains is traditionally used
in Domain Theory. It however lacks the symmetry of a general adjunction. It turns



1.2 Main Results of the Dissertation

out that working with adjunctions in full generality in fact simplifies the reasoning.
Moreover, one obtains more general results even in the case of domains as posets.
Also, as a byproduct, we obtain in Corollary 4.3.6 an adjoint functor theorem for
A-accessible categories.

2. Theorem 4.4.8 states that the 2-quasicategory of generalized domains, finitary func-
tors and natural transformations is biequivalent to a biquasicategory of flat distrib-
utors.

This generalizes the fact that Scott continuous maps can alternatively be described
by approzimable relations (see e.g. [SLG94|, Chapter 6, Remark 3.3). The notion
of a flat distributor, introduced in 4.4.2, ties up two important properties: a flat
distributor is a “relation” between categories (i.e. it is a distributor) and whenever
one fixes the second argument, it becomes a flat functor.

Both representation theorems mentioned above can be “restricted” to Scott complete
categories.

The last part of Chapter 4 deals with permanence results for generalized domains. It
is proved that certain generalized domains are closed under rather general limit construc-
tions. The proofis based on the observation that the 2-category of sketches is 2-topological
over small categories. As a consequence one obtains another proof of the fact that Scott
complete categories form a cartesian closed quasicategory. Another case of a limit con-
struction is forming a category of Eilenberg-Moore (co)algebras for a finitary (co)monad.
Since finitary monads and comonads are natural generalizations of finitary projections
and finitary closures on a poset, one obtains generalizations of results on closedness of
certain domains under finitary projections and finitary closures.

I have not pursued the concept of a 2-topological 2-category any further, but it might
be worthwhile.

Chapter 5. It contains the construction of a free conservative cocompletion of an arbitrary
category — this concept has been introduced in [Ve97c]. Free conservative cocompletions
generalize free cocompletions of categories in the aspect that certain prescribed class of
colimits is preserved by the cocompletion. In Theorem 5.1.12 it is proved that such a
cocompletion exists for any category, moreover, one can talk about a “canonical” choice
of such a cocompletion. I took a direction in the spirit of how cocompletions of categories
were studied e.g. in [Lam66| or [Ke82|, namely the desired cocompletion is a certain
category of Set-valued functors which preserve a prescribed class of limits. A more com-
mon approach to cocompletions of posets is to work with special types of ideals — see
e.g. [Er86]. It turns out that one can proceed analogously for categories too. Ideals in
posets must be replaced with discrete op-fibrations. 1 give an equivalent description of a
free conservative cocompletion as a category of discrete op-fibrations in Section 5.2.

The final section of Chapter 5 is devoted to a free cocompletion w.r.t. small filtered
colimits. Anders Kock showed in [K093] that such a cocompletion yields a special type
of a monad called a KZ doctrine. Categories having filtered colimits then can naturally
be identified with algebras for a KZ doctrine and finitary functors are precisely homomor-
phisms of such algebras.

Chapter 6. This chapter gives the basic facts about a categorical generalization of contin-
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uous domains. The basic properties of the resulting concept of a continuous category have
been established by Peter Johnstone and André Joyal in their paper [JJ82]. The defini-
tion of a continuous category uses the free cocompletion of a category w.r.t. small filtered
colimits. The theory of KZ doctrines from [K093] allows us to view continuous categories
naturally as certain coalgebras. These coalgebras have naturally defined homomorphisms.
It turns out that, when one restricts to continuous posets, these homomorphisms are pre-
cisely monotone maps which preserve the way-below relation. Therefore one can introduce
the concept of a way-below preserving functor.

Another approach to the way-below relation is the notion of a wavy arrow from [JJ82].
This concept leads to studying idempotent comonads of flat distributors over a category.
I think that such comonads are a natural candidate for a general notion of an abstract
base introduced by Samson Abramsky and Achim Jung in Definition 2.2.20 of [AbJ96].
This is a work in progress and therefore I have included no results in this spirit.

Chapter 7. This chapter is devoted to the concept of a subobject of a domain and to a
categorical generalization of the ezristence of a universal Scott domain.

The first section of Chapter 7 contains two notions of a subobject: a finitary retract
and an (e,p)-subdomain. 1 give a few basic results on the closedness of 2-quasicategories
of domains under subobjects in the 2-quasicategory of all categories.

The existence of a universal domain has been proved by Dana Scott in [Sc76]. I give
a categorical generalization of Scott’s result based on a very general embedding theorem
of Véra Trnkovd from her paper [Tr66a]. The proof given in Chapter 7 is independent, of
Scott’s proof and the technique of my proof also allows to give another proof of Scott’s
result. These results come from [Ve97a).

The third variety of results of Chapter 7 deals with the question whether a universal
generalized Scott domain exists within the realm of finite categories. It is shown that this
question must be answered in negative: there is no such universal object. This result is a
joint work of Véra Trnkova and myself ([TrV97]).

From the paper [TrV97] also comes the notion of an Ry-Plotkin category as a natural
generalization of a bifinite domain. I give a definition of a general Plotkin category in
Chapter 7 and I show that a universal Plotkin category exists. Again, the technique used
here gives an independent proof that a universal bifinite domain exists.

Chapter 8. This chapter contains the proof of the basic ingredience for solving recursive
domain equations — the so called limit-colimit coincidence. The result is based on the
ideas of Paul Taylor from [Tay87]. It was Taylor’s idea that in proving the limit-colimit
coincidence for posets as domains, all one really uses are general properties of adjunctions
and not properties of their special instance, namely embedding-projection pairs.

The proof of the limit-colimit coincidence for categories having filtered colimits uses
Penrose diagrams as the main technical tool. I believe that the use of Penrose diagrams
make the proof quite readable.

Index. All items of the index refer to the first page where the relevant notion has occured.

Glossary of Symbols. It contains references to the page where the symbols have been
used for the first time.
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Chapter 2

Classical Notions of Domain Theory

In this chapter we collect the very basic notions of Domain Theory for further reference.
The terminology used here comes from the texts [Gun92] and [SLG94].

2.1 Various Types of Domains

Domain Theory, as a theoretical tool for computer science, was founded by Dana Scott in
the late 60’s (we refer to Chapter 1 of [AbJ96] for a historical account of a development
of Domain Theory). Mathematical structures introduced by Scott are special partially
ordered sets called domains and they have been shown to be suitable for modelling the
semantics of programming languages and their data types. There are various types of
partially ordered sets which are frequently called a domain. There, however, seems to be
no standard of a domain — different definitions suit different practical purposes. Roughly
speaking, a domain is a partially ordered set, where the elements of the underlying set
represent a piece of knowledge, the order represents the fact that one piece of knowledge
approximates another one, and sometimes the partial order bears additional information
about which pieces of knowledge are finite in an intuitive computational sense. In this
section we present the most common notions of domains, namely,

e pointed, directed complete partial orders (pointed DCPOs) — Definition 2.1.1,

e pointed, algebraic, directed complete partial orders (pointed algebraic DCPOs) —
Definition 2.1.3,

e Scott domains — Definition 2.1.5.
These structures (and also some other notions) will be generalized in further text.

Definition 2.1.1 A partially ordered set (X,C) is called a pointed directed complete
partial order, if it has a least element | and has suprema of directed subsets of X.

Intuitively, we view L as no knowledge and a directed subset D of X as a set of
approzimations of an ideal piece of knowledge. The requirement that | | D exists intuitively
states that the ideal piece of knowledge can be reached by a (possibly infinite) process.
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Example 2.1.2 Let nat denote the set {0,1,...} of natural numbers. A function from
nat to nat not neccessarily everywhere defined is called a partial function. Let X be the
set of all partial functions from nat to nat, denoted by X = nat ~» nat. Define a relation
C on X as follows:

f E g iff whenever f(n) is defined, then g(n) is defined and f(n) = g(n).
Then C is a partial order and the structure (X, C) is a pointed DCPO:
1. The least element L is the partial function defined nowhere.

2. Suppose that M = {f; | i € I} is a directed subset of X. Then we can define f as
follows: f(n) is defined iff there is i € I such that f;(n) is defined and f(n) = f;(n).
Then f is a partial function (since M was directed) and it is a supremum of M.

|

Definition 2.1.3 Let (X, C) be a pointed DCPO. An element a € X is called compact,
if whenever a C || D for a directed subset D C X, then a C d for some d € D. (X,C) is
called a pointed algebraic DCPO, if there is a set Xj, of compact elements such that for
any x € X theset {a |aC z, a € Xp,} is directed and z = | {a | a C z, a € Xp,}.

Intuitively, a compact element is a finite piece of knowledge. The possibility to express
each element as a supremum of compact elements below it means that each piece of
knowledge can be approximated by its finite approximations.

Example 2.1.4 Suppose that (X,C) is the pointed DCPO of partial functions from
Example 2.1.2. One can easily find out that this is in fact a pointed algebraic DCPO.
The set Xp, of compact elements is the set of all partial functions whose definition domain
is a finite subset of nat. Clearly, the set {a | @ € Xpn,a C f} is directed and the equality
f=1Ha|a€ Xpn,a T f} holds for any f € X. O

Definition 2.1.5 A pointed algebraic DCPO (X,C) is called a Scott domain, if any
non-empty subset of X bounded from above has a supremum.

Example 2.1.6 The pointed algebraic DCPO (X,C) of partial functions from Exam-
ple 2.1.2 is a Scott domain. If M is any subset of X with an upper bound u, then
f = UM exists and is defined as follows: f(n) is defined iff there is a function g € M
such that g(n) is defined and f(n) = g(n). O

Example 2.1.7 The last example can be easily generalized as follows: for any pair of
sets A, B, the set X = A ~» B of all partial functions from A to B together with a
relation C defined as follows:

f E g iff whenever f(a) is defined, then g(a) is defined and f(a) = g(a).

form a Scott domain (X, C). 0
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Example 2.1.8 To any set X there can be added an element L ¢ X to obtain a Scott
domain, called flat domain on X, by defining a relation C on the set X U { L} as follows:

aCbifa=_1Lora=5a.
A flat domain on the set X is frequently denoted by X . O

For a pointed algebraic DCPO (X, C), the partially ordered set (Xj,,C) is of great
importance: it suffices for the reconstruction the original partially ordered set (X, C). The
reconstruction is provided by the so called ideal completion, which is the free completion
w.r.t. directed suprema.

Definition 2.1.9 An ideal of a poset (X,C) is a set I C X with the following properties:
1. If x € I and y C z, then y € I, i.e. I is downward closed.

2. 1 is a directed subset of X.

It is easy to verify that given a poset (X,C) and an element x € X, then the set
lz={y € X |yC x} is an ideal, called a principal ideal generated by x.

Definition 2.1.10 The ideal completion (X, C)* of a poset (X, C) is the set of all ideals
of (X, C) ordered by inclusion.

The above mentioned reconstruction is as follows:

Theorem 2.1.11 The ideal completion (X, C)* of a poset (X, C) with a least element is
a pointed, algebraic DCPO. The set of all compact elements of (X,C)* is {{ z |z € X}.
Moreover, the map x +—| x is a monotone embedding of (X,C) to (X, C)*.

Proof. See e.g. [AbJ96], Proposition 2.2.22. a
Thus the posets (A, C) arising as (Xz, C) are precisely
e posets having a least element (for pointed algebraic DCPOs),

e complete upper semilattices (for Scott domains), see e.g. [SLG94], Chapter 3, Propo-
sition 2.6. A complete upper semilattice (CUSL) is a partially ordered set (A,LC)
which has a least element | and is finitely boundedly cocomplete — that is, any
finite subset of A bounded from above has the least upper bound.

Remark 2.1.12 It is obvious that any notion of a domain introduced so far has its
“unpointed” version. One can obtain it by dropping the requirement that the least element
exist. E.g. a DCPO is a poset having suprema of all directed subsets. Analogously one
can define an algebraic DCPO. O

In the rest of this chapter we will use the word “domain” as a substitute for either a
pointed DCPO, a pointed algebraic DCPO or a Scott domain.
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2.2 Domains are Suitable for Recursive Definitions

In many areas of mathematics, recursive definitions give a neat description of objects.
Sometimes the feature of recursiveness is built-in in the whole subject — e.g. when defin-
ing a syntax of programming languages such as Pascal, Ada etc. (cf. [Wa91] or [Wi75]).

We show in this section how the machinery of pointed DCPOs works for specifying
semantics of recursively defined objects. Our example, however, will be of much simpler
nature than that of a programming language semantics.

Example 2.2.1 Suppose we want to define recursively a partial function fac : nat ~» nat
in the following way:

1, provided n = 0
n*fac(n — 1), provided n >0

fac(n) = {

Note that the function fac should be defined everywhere but nevertheless we want to
work in the pointed DCPO of partial functions.

The defining conditions on the function fac can be described as a solution of the
equation f = Y(f), where

Y : (nat ~ nat) — (nat -~ nat)
FIN o { 1, provided n = 0
n n* f(n—1), providedn >0

The desired fixed point fac of Y will be obtained via approximations f; as follows:

fo(n) = L (undefined for all n € nat)

1, forn=20
hin) = {undeﬁned, foralln >0

1, forn=0
fo(n) = { 1, forn=1

undefined, foralln >1

1, forn=0

1, forn=1
fs(n) = 2, forn =2

undefined, for all n > 2

Intuitively, the approximations f; represent a partial finite knowledge of the solution.
Moreover, our knowledge increases, since fy C f; C ... holds. Having in mind that the
structure (nat ~» nat,C) is a pointed DCPO and that every countable chain is directed,
the supremum | |72, f; exists.

If we denote fac = |2, fi, then it is easy to show that Y (fac) = fac. O

The last example is an instance of a much more general principle of solving recursive
equations. The principle (Theorem 2.2.3 below) also reveals that we have to work not
only with suitable objects (pointed DCPOs), but also with suitable morphisms — the so
called continuous mappings.
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Definition 2.2.2 A monotone map f : (X;,C;) — (X5, C5) between pointed DCPOs
is called continuous, if it preserves directed suprema, i.e. if for any directed set D C X;

it holds that
f(UD) = {f(d)|de D}

Note that a continuous mapping is not required to preserve least elements.

It is easy to show that each identity mapping is continuous, and that continuous map-
pings compose — therefore we obtain a category DCPO of pointed DCPOs and continuous
mappings.

Theorem 2.2.3 (Kleene’s Fixed Point Theorem) Suppose that (X,C) is a pointed
DCPO and let f : (X,C) — (X,C) be a continuous mapping. Then f has a unique least
fixed point, i.e. there exists a unique uf € X such that the following hold:

1. f(uf) = pf (uf is a fized point of f).
2. If f(x) =z for some x € X, then pf T x (uf is a least fized point of f).

Proof. See e.g. [SLG94|, Chapter 2, Theorem 3.6. O

Various categorical generalizations of the previous theorem are known — see e.g. [SP82]
and [AT90]. These general theorems have been used to prove that a big number of
recursive equations do have a solution. Also, working in a more general context provide
recursively defined domains, i.e. solutions of equations of the form D = F(D), where F
is a functor defined on the category of domains and continuous mappings. The functor
F cannot be arbitrary, it must satisfy conditions analogous to continuity. See [SLG94],
Section 6.4 and [Ad97] for details.

2.3 Subdomains

If we view domains as universes in which we interpret syntactic types of programming
languages, then a notion of subtyping requires a proper notion of a subobject. There
are two (essentially equivalent) approaches which appeared to be suitable (see [SLG94],
Section 4.5):

1. An embedding-projection pair — this notion mimics the standard way of how subob-
jects are treated in category theory: subobjects are special morphisms in a category.

2. A subdomain — this notion mimics a standard way of how subobjects are treated
in universal algebra: subobjects are substructures.

We present both definitions for Scott domains in this section. They can easily be modified
for other types of domains.
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Embedding-projection Pairs

An embedding-projection pair (e,p) : (X,C;) — (Y, Cy) from a Scott domain (X, C;) to a
Scott domain (Y, Cy) is a pair of continuous functions e : (X,C;) — (Y, Cy) (embedding
part) and p : (Y,Co) — (X, C;) (projection part) such that p-e =1p and e-p C 1.
The embedding part of any embedding-projection pair has a domain-codomain restriction
which is a monotone map between the corresponding CUSLs f : (Xzp, 1) — (Y, Co)
such that

1. f is a full embedding,
2. f preserves the least element,

3. if A C Xpy, is a finite non-empty set and f[A] is bounded from above, then A is
bounded from above and f[[]A] = || f[A].

A monotone map between CUSLs having the above properties 1.-3. is called a CUSL
embedding ([SLG94], Chapter 4, Definition 1.4). Any CUSL embedding between CUSLs
can be extended into an embedding part of some embedding-projection pair between
Scott domains (see [SLG94] Chapter 4, Proposition 5.11). Embedding-projection pairs
determine the notion of a subdomain, thus (X, C;) is an embedding-projection subdomain
of (Y, Cy), if there exists an embedding-projection pair (e,p) : (X,C;) — (Y, Cy).

Subdomains

Given a Scott domain (Y, E) and X C Y, then (X, C/x) is called a subdomain of (Y, ),
provided that the following conditions hold:

1. LeX,
2. if D C X is directed, then | | D € X (the supremum is taken in (Y, C)),
3. if a is a compact element of (X, C,x), then it is compact in (Y, C),

4. if a, b are compact elements in (X, C/x) and have an upper bound in (Y, C), then
their supremum lies in X,

5. for any = € X it holds that z = | [{a | @ € Y, N X, a C =} (the supremum is taken
in (¥,0)).

It is easy to see that subdomains of (Y, C) are precisely the substructures of (Y, C) which
are Scott domains.
Subdomains are related to embedding-projection subdomains as follows:

Theorem 2.3.1 (X,C;) is an embedding-projection subdomain of (Y,Cs) iff (X, ;) is
isomorphic to a subdomain of (Y, Co).

Proof. See e.g. [SLG94], Chapter 4, Theorem 5.14. O



Chapter 3

Category Theory Tool Kit

This chapter serves as a review of facts from category theory which we need to formulate
the results of later chapters. Most of these facts are fairly standard and may be found
e.g. in the classical book [MLT71] or in the more recent Handbook [Bo94]. For details on
accessible categories we refer to the books [MP89] and [AR94].

3.1 Size Classification

Whenever we work with categories we must distinguish between “sizes” of collections.
Usually, distinction between sets and classes suffices. We will, however, often want to
work with the “category of all categories” etc., which would not be legitimate within such
a set theory. This problem is avoided by using Grothendieck universes.

A Grothendieck universe is a model of set theory. More precisely, a Grothendieck uni-
verse is a non-empty set U with the following properties (see [SGA4], Exposé I, Section 0):

1. If r € U and y € z then z € U.

2. If z,y € U then {z,y} € U.

3. If z € U then the set of all subsets of x is an element of U.
4. f I € Uandif z; € Ufor alli € I then U{z; |i € I} € U.

The existence of a Grothendieck universe is ensured, provided that an inaccessible
cardinal exists. Recall from e.g. [Je78] that a cardinal x is inaccessible, provided that
Kk > Vg, k is regular (i.e. ¢f(k) = k) and « is a strong limit cardinal (i.e. 2* < x for any
cardinal A < k).

If k is an inaccessible cardinal then the x-th level V. of the cumulative hierarchy is a
model of ZFC (cf. [Je78|, Lemma 10.2), thus V, is a Grothendieck universe.

We assume the existence of three fixed Grothendieck universes: Uy, Uy, U3 such that
U, € U, € U;. Elements of U; are called (small) sets. Elements of Uy are called classes.
Elements of Uj are called conglomerates.

A category is called small, if its morphisms form a set. A category is called large (we
will often drop the adjective “large” and talk just about a category), if its morphisms form
a class and there is just a set of morphisms between any pair of its objects. A quasicategory

14
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is defined just like a category, except that its morphisms can form a conglomerate. A
quasicategory which is a category is called legitimate. For details on the problems of size
see [AHS90], Chapter 0, Section 2.

Sometimes we need a finer control of the size of a category:

Definition 3.1.1 Let x be an infinite cardinal. Let us say that a category K is a k-
category, it it has at most xk objects and each hom-set of K has less than x elements.

A category K is called k-small if it is a k-category having less than k objects. In case
Kk = Xy we say a finite category instead of an Ng-small one.

3.2 Adjunctions

We say that categories A and B are isomorphic (A = B) if there exists a pair of functors
G:A— Band F:B — A such that FG = 14 and GF = 13.

We say that categories A and B are equivalent (A ~ B) if there exists a pair of functors
G:A —Band FF: B— A and a pair of natural isomorphisms n : 15 = GF' and
e : FG = 1. It is clear that isomorphic categories are also equivalent, but not vice
versa.

The fact that a functor F' : B — A is a left adjoint to G : A — B is denoted by
F 4 G. Adjoint functors determine two natural transformations:

n:1lg = GF (unit) e : FG = 1 (counit)

such that the triangle identities Ge - nG' = 1¢ and ¢F - F'p = 1 hold.

The quadruple (F, G, n,¢) is then called an adjoint situation.

Sometimes, to assert that G : A — B has a left adjoint, only one of the two triangle
identities needs to be verified — see Lemma 3.2.3. The result requires the category A to
have the following property:

Definition 3.2.1 We say that idempotents split in the category A (or that A is Cauchy
complete), if for each A-morphism f : @ — a such that f - f = f (an idempotent in A)
there exists a pair of morphisms r : ¢« — b and s : b — a such that s-r = f and
r-s = 1. The pair r, s is called a splitting of f.

Cauchy completeness is indeed a mild (co)completeness requirement:

Lemma 3.2.2 Let f: a — a be an idempotent in A. The following are equivalent:
1. f splits.
2. An equalizer of f and 1, ezists.

3. A coequalizer of f and 1, exists.

Proof. See [Bo94|, Volume 1, Proposition 6.5.4. 0

By the above lemma, all idempotents split in the category A, whenever one of the
following is true:
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e A has equalizers.
e A has coequalizers.

e A has filtered colimits (see Definition 3.5.1), since a coequalizer of an idempotent
and an identity morphism can be obtained as a filtered colimit.

If all idempotents split in A, then so they do in any functor (quasi)category [B, A], since
(co)limits are formed pointwise.

We now formulate a very useful observation due to Robert Paré (see [ML71|, Chapter
IV.1, Exercise 4):

Lemma 3.2.3 Suppose that F': B — A and G : A — B are functors, n: 1z = GF
and € : FG = 14 are natural transformations such that Ge - nG = 1g. Then ¢F - Fn
is an idempotent in the functor (quasi)category [B, A]. This idempotent splits iff G has a
left adjoint.

Remark 3.2.4 Note that the above lemma does not assert that F' is a left adjoint of G.
O

Theorem 3.2.5 Suppose that (F,G,n,e) : A — B and (F',G",n',¢') : A — B are
adjoint situations. For any natural transformation p : F = F' there exists a unique
natural transformation v : G' = G such that the following diagrams commute:

n

G’ - G F F
nG’ Ge Fy eF’
GFG'—z>GF'G'  FG'F' — > FGF'
FG' fn FG 1p L GF
e e o G
jales . s G'F — GF'

Moreover, all four diagrams commute, provided that one of them does.

Proof. See e.g. [MLT71], Section IV.8, Theorem 2. a

Definition 3.2.6 The natural transformation v corresponding to p by virtue of Theo-
rem 3.2.5 is called a right mate of u. Conversely, u is called a left mate of v. The pair
(i, v) is called a morphism from (F 4G, n,¢e) to (F' 4G, n', ).

The precise correspondence between left and right mates (the so-called mate calculus)
will be explained later (see Theorem 3.3.14).
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3.3 2-Categories and Bicategories

In what follows we will often work with categories having certain categories as objects and
functors as morphisms. These structures naturally bear a “two-dimensional” structure.
The axiomatic treatment of these notions is provided by the definitions of a 2-category
and bicategory. For a detailed survey we refer to [Gr74] and [Bo94].

We denote by 1 the category having just one morphism (this morphism is neccessarily
the identity on the unique object of 1).
Definition 3.3.1 A 2-category K is given by the following data:

1. A class Ob(K) of K-objects.
2. For each pair a, b of K-objects a small category K(a, b).

3. For each triple a, b, ¢ of K-objects a composition functor Cqp.. : K(a,b) x K(b, ¢c) —
K(a, c).
4. For each K-object a a functor U, : 1 — K(a, a).
such that the following axioms hold:

(i) Associativity axiom: the diagram

K(a,b) x K(b, ¢) x K(c, d) —Cred K(a, b) x K(b, d)
CabeX1 Cab,d (3.1)
K(a,c) x K(e, d) o K(a, d)
commutes for any quadruple a, b, ¢, d of K-objects.
(ii) Identity axiom: the diagrams

1 x K(a,b) = K(a,b)
Uax1 1 (3.2)

K(a,a) x K(a, b) ™ K(a,b)

K(a,b) x 1 - K(a, b)
1xUp 1 (3.3)

K(a,b) x K(b,b) K(a,b)

Ca,bb
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commute for any pair a, b of K-objects.

Objects of K are called 0-cells, objects of each K(a,b) are called 1-cells, denoted by f :
a —> b, and morphisms of K(a, b) are called 2-cells, denoted by « : f = g. The identity
I-cell on a is denoted by 1,, the identity 2-cell on f is denoted by ;. Composition in both
K and all categories K(a,b) will be both denoted by a dot. We will call composition for
2-cells vertical composition. Instead of Cyp.(, B) for 2-cells a: f = gand f: h =k
we will write Bxa : h- f — k- g and we will call x horizontal composition.

Remark 3.3.2 We say that a 2-category is small, if all O-cells form a set. We also
define the notion of a 2-quasicategory similarly to the notion of a quasicategory: a 2-
quasicategory K is given by a conglomerate Ob(K) of objects, quasicategories K(a,b) for
each pair a, b of objects, functors C, ;. and U, such that (i) and (ii) above hold. O

Example 3.3.3 Each category K can be considered as a (so called discrete) 2-category:
take K-objects for 0-cells, K-morphisms for 1-cells and let 2-cells be only the identity
2-cells. Conversely, each 2-category K has its underlying category K,: forget the 2-cells.
The two processes form in fact an adjunction — see [Bo94], Volume 2, Proposition 6.4.7.

O

Example 3.3.4 The following example of a 2-category is useful: Z has only one 0-cell x,
only one identity 1-cell 1, and only one identity 2-cell i1,. Z is called a unit 2-category.
O

Example 3.3.5 Let us give examples of 2-(quasi)categories we use later:

1. The “paradigmatic” 2-category is Cat with small categories as 0O-cells, functors as
1-cells and natural transformations as 2-cells. One can easily verify all axioms of
a 2-category. For functors (i.e. 1-cells) F : A — B, G: A— B, H: C — D,
K : C — D and natural transformations (i.e. 2-cells) 0 : F = Gand 7 : H = K,
the horizontal composition 7xo : H-F = K -G is defined as 7x0 = (7G) - (Ko) =
(Ho) - (TF).

2. CAT is the 2-quasicategory having all categories as 0-cells, all functors as 1-cells and
all natural transformations as 2-cells.

3. CAT! is the 2-quasicategory having all categories as 0-cells, all left adjoints (i.e. all
functors having right adjoints) as 1-cells and all natural transformations as 2-cells.
We call CAT' the 2-quasicategory of left adjoints.

4. CAT" is the 2-quasicategory having all categories as 0-cells, all right adjoints (i.e.
all functors having left adjoints) as 1-cells and all natural transformations as 2-cells.
We call CAT" the 2-quasicategory of right adjoints.
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Notation 3.3.6 In 2-category theory, a weakening of a commutativity of a diagram ap-
pears — namely, the commutativity of a diagram up to a 2-cell. In fact, diagrams com-
mutative up to a 2-cell are rather typical.

In any 2-category, the diagram

represents the 2-cell 7 : k- h = ¢g - f. In the diagram above, 7 is called a comparison
2-cell.
Analogously, the diagram

represents the 2-cell 7: g- f = k- h.

We will often use a different notation for diagrams commuting up to a 2-cell — the
so called Penrose diagrams. Penrose diagrams represent what really matters, namely the
2-cells.

A single Penrose diagram is a rectangle with a dotted boundary. The rectangle is
divided by curves labelled by 1-cells into sections labelled by 0-cells. A curve representing
a 1-cell may either terminate at a boundary of the rectangle or at a box labelled by a
2-cell. For example, the following Penrose diagram represents a 2-cell o : f = g, where
f,9:a — b are 1-cells:
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Instead of diagram (3.4) we can draw the following:

The important feature of Penrose diagrams is that the dotted rectangles are of a “rub-
ber length”. This allows us to “paste” them together whenever labellings of neighbouring
areas match. First, we describe what pasting is in terms of squares commuting up to a
2-cell.

Squares commuting up to a 2-cell can be pasted (composed) horizontally and vertically:

e the diagram

h :T> g é,} q (37)

c d d

represents the 2-cell (7" xiy) - (i x7) : k' - k-h = ¢’ - f'- f. In the notation of
Penrose diagrams, we draw instead the following:
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e the diagram

a ! b
h == g
c P d (3.9)
n Ty g
c o d

represents the 2-cell (ig x7) - (7' %ip) : k' -h'-h=4¢"-g- f.

The corresponding Penrose diagram of (3.9) is:

ol e (3.10)

Remark 3.3.7 Each notation has its own advantages. In what follows we use both di-
agrams commutative up to a 2-cell and Penrose diagrams. Usually, when using Penrose
diagrams, we omit the explicit mention of 0-cells. O

Example 3.3.8 Perhaps the most common instance of squares commutative up to a 2-
cell is an adjunction. A pair of adjoint functors can be seen as a “pair of functors inverse
to each other up to a 2-cell”: see the following familiar diagrams

B ¢ A A LA
IBJ N F F N 1a
B B B A
1 G

for F: A — B, G: B — A with G - F' and the unit transformation n : 13 = FG,
the counit transformation € : GF' = 1,, which should be read “n is a transformation
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from 1 to F'G” (the diagram on the left) and “c is a transformation from GF to 1,”
(the diagram on the right). Of course, the above two diagrams do not reflect the main
thing about 7 and ¢ — namely their universality and couniversality!

To desribe the triangle identities we use Penrose diagrams:

A (3.12)

The triangle identities thus express the fact that n and ¢ are, in a sense, mutually
inverse. =

Definition 3.3.9 A bicategory K is given by the following data:

1. A class Ob(K) of K-objects (also called 0-cells).

2. For each pair a, b of K-objects a small category K(a,b). K(a,b)-objects are called
1-cells, K(a, b)-morphisms are called 2-cells.

3. For each triple a, b, ¢ of K-objects a composition functor Cyy . : K(a,b) x K(b, c) —
K(a, c).

4. For each K-object a a functor U, : 1 — K(a, a).
such that the following axioms hold:

(i) Associativity isomorphism: for any 4-tuple a, b, ¢, d of K-objects there is a natural
isomorphism o p ¢ 4



3.3 2-Categories and Bicategories 23

K(a,b) x K(b, ¢) x K(c,d) —Cre K(a, b) x K(b, d)
Cab,e X1 O‘%d Cab,d (3.13)
K(a,c) x K(c,d) - K(a,d)
a,c,d

i.e., for any triple of 1-cells f : « — b, g : b — ¢, h : ¢ —> d there is an
isomorphism 2-cell aygp:h-(g- f) => (h-g) - f, where we write a4, instead of
the precise but clumsy (,p,c,d) g,

(ii) Identity isomorphisms: for any pair of K-objects a, b there are natural isomorphisms

IR

1 x K(a,b) K(a,b)

Ug X1 Pa 1

K(a,a) x K(a, b) o K(a,b) 6514
o 3.14
K(a,b) x 1 - K(a,b)
1x Uy % 1
K(a,b) x K(b,b) z K(a,b)
a,b,b

i.e. for each 1-cell f : a — b there are isomorphism 2-cells p;y : f -1, = f and
A i1y - f = f, where we abbreviate e.g. p; for the precise but clumsy (p,);-

(iii) Associativity coherence: for any 4-tuple of 1-cells f :a — b,g:b —> ¢, h: c —> d,
k : d — e the following diagram
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k(b (g f)) —22%" o k- ((h-g) - f)

®f,hgk

(k-(h-g)-f (3.15)

Qg ki f

(k-h)-(9-f)—agm=((k-h)-9)- f
commutes.

(iv) Identity coherences: for any pair of 1-cells f : a — b, g : b —> ¢ the following two

diagrams
g-(f-1la) ——=L S~ (g-f)-1,
N g (3.16)
1.-(g- f) fote (l.-g)- f
g-f
commute.

When we want to emphasise the relevant isomorphisms we write the bicategory as the
quadruple (K, a, p, A).

Remark 3.3.10 It is clear that the concept of a bicategory generalizes the notion of a
2-category (take the isomorphisms «, p and A to be identities).
We can also speak about biquasicategories in the expected sense. O

Definition 3.3.11 Given bicategories (A, a?, p*, \*) and (B, a®, pB \B) we say that & :
A — B is a lax functor from A to B, if the following conditions are satisfied:

1. For each O-cell @ in A a 0-cell ®a in B is assigned.

2. For any pair of O-cells a, b in A there is a functor @, : A(a,b) — B(®Pa, ®b).

3. For any triple of 0-cells a, b, ¢ in A there is a natural transformation ¢, . (we denote
by CA, CB the respective composition functors):
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A
A(a,b) x A(b, ¢) —— = A(a, )
<I>a’bX<I>b,C ("g; q>a,,c (3-17)
B(®a, b) x B(®b, dc) — B(®a, ®c)
C®%q,9b,0c

i.e. for each pair of 1-cells f : @ — b, g : b — ¢ in A we have a 2-cell in B
0rg: Pg-@f = ®(g - f), where we write ¢, instead of the precise but clumsy
(Pape) g and analogously @ f instead of @, f.

4. For any 0-cell a in A there is a 2-cell 9, : @, 4(1,) = 1, in B.

5. Associativity coherence: for any triple of 1-cells f:a — b, g:b— ¢, h:¢c — d
in A the following diagram

i@h*‘pf,g

Oh - (Bg - Df) h - D(g- f)

OCB<I>f,<I>g,<I>h Pgfoh
(®h - Bg) - Df ®(h-(g-f)) (3.18)
Qg h¥ins (et f,g.n)

(h-g) @f —pr > 2((h-g) - f)
commutes, where we write ® instead of e.g. ®,.

6. Identity coherences: for any 1-cell f : @ — b in A the following two diagrams

Of B, — 2 of1p, Bl Bf — 1, Df
Pla.f PPay 1, Xar  (3.19)
(D(f : 1(1) A Qf (D(lb : f) A Qf
Py A%y
commute.

When we want to emphasise the relevant comparison 2-cells we refer to a lax functor as
to the triple (@, ¢, v).



26 Chapter 3. Category Theory Tool Kit

In case ¢ and 1 are isomorphism 2-cells, ® is called a pseudofunctor. In case A and B
are 2-categories and ¢ and v are identity 2-cells, ® is called a 2-functor.

The proper concept of an “equivalence” between 2-categories (or, more generally,
between bicategories) is the following (see [Str80]):

Definition 3.3.12 If A and B are 2-categories (or bicategories), a pseudofunctor @ :
A — B is called a biequivalence, if

(a) for any 0-cell bin B there is a 0-cell a in A, a pair of 1-cells f : da — b, g : b — Pa
and a pair of isomorphism 2-cells a: fg = 15, f: 1o, = g f, and

(b) for any pair of 0-cells a, ¢’ in A, the functor @, . : A(a,d’) — B(®a, ®d’) is an
equivalence of categories.

Recall the definition of CAT' and CAT" from Example 3.3.5. It is intuitively clear
that CAT! and CAT" are “dually equivalent”. To state this precisely (and this result is
probably a folklore), we need the notion of a dual for a 2-category:

Notation 3.3.13 If K is a 2-category, then by K’ we denote the 2-category obtained
from K by reversing both all 1-cells and all 2-cells. a
Theorem 3.3.14 CAT" and (CAT") are biequivalent.

Proof. We are going to define a contravariant pseudofunctor (®, ¢, ) : CAT" — CAT
and show that it is a biequivalence.

Suppose that for each right adjoint F' : A — B a fixed left adjoint L¥ : B — A
is chosen in such a way that L' = 1,. Moreover, let 77 and " be unit and counit of
LY AF (withnp'a =¢'a =4, ).

Let ®(A) = A for each category A. Let

@A,B:T:F1:>F2|—>T*:LF2:>LF1

where 7% : L? = L'! is the left mate of 7. Explicitly, 7* is defined as the following
2-cell:

(3.20)
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For F: A— B, G : B — C, the isomorphism ¢pg : ®(F) - &(G) = ®(G - F) is
defined as follows:

(3.21)

Using the fact that L¥ - LY 4 G - F with GpL¢ - n% as a unit and e - L¥eCF as
a counit, L 4 F and L¢ 4 G, it is easy to show that ppq is an isomorphism with the
inverse:

(3.22)

Define 15 : ®(1a) = 1(a) to be the identity natural transformation.
It is a routine to verify that (®, ¢, ) is a (contravariant) pseudofunctor which is a
biequivalence. We omit these straightforward computations. a

Remark 3.3.15 In the previous proof we have not made any specific use of the fact
that we work in the whole 2-quasicategory CAT". In fact, suppose that K is any sub-2-
quasicategory of CAT which is full on 2-cells, i.e. that K(a,b) has all natural transforma-
tions as morphisms. If we define K™ and K' in the obvious way, then K™ and (K')? are
biequivalent. We will use this fact later in Chapter 8. O

Definition 3.3.16 Suppose (@, p, 1) and (9', ¢',¢') are lax functors from a 2-category
A to a 2-category B. A lax natural transformation o : (®,¢,19) = (¥, ¢, 1) consists of
a l-cell o, : ®a — ®'a for each O-cell a of A, and a comparison 2-cell o for each 1-cell
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fira—b:

(3.23)
......... e
subject to the following conditions:
1. The following equality
o ®'(14)
= (3.24)
....... e gl
holds for any 0-cell a.
2. For any pair of 1-cells f : a — b, g : b — ¢, the following equality
_______ S L LDe B )
ap
2(f) = (3.25)
........... T T R

holds.

In case all the comparison 2-cells ¢’s are isomorphisms, o is called a pseudonatural trans-
formation.

Let us spell out the special case of the previous definition for 2-functors:
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Definition 3.3.17 Suppose ® and &’ are 2-functors from a 2-category A to a 2-category
B. A lax natural transformation o : ® = @' consists of a 1-cell o, : Pa —> P'a for each
O-cell a of A, and a comparison 2-cell of for each 1-cell f : a — b:

(3.26)
......... gy
subject to the following conditions:
1. o0y, is the identity 2-cell on o,.
2. For any pair of 1-cells f : a — b, g : b —> ¢, the following equality
_____ o0 ¥ P9 LG4 - L
Jp = (327)

holds.

3. For any pair of 1-cells f, g : a — b and any 2-cell 7 : f = g the following equality

(3.28)

holds.

In case all comparison 2-cells ¢’s are isomorphisms, o is called a pseudonatural transforma-
tion. In case all comparison 2-cells ¢’s are identities, o is called a 2-natural transformation.
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Remark 3.3.18 It is typical that each 2-categorical notion has basically three variants:
e.g. for a functor one has a 2-functor (comparison 2-cells are identities), a pseudofunctor
(comparison 2-cells are isomorphisms) and a laz functor (comparison 2-cells are arbi-
trary). Moreover, each lax notion has its dual, the so-called op-laz notion — reverse the
comparison 2-cells.

More relaxed notions could have been introduced, e.g. that of a lax natural transfor-
mation between lax functors between bicategories. These notions are indeed studied in
the literature, see e.g. [Gr74]. We, however, do not need such generality. O

We need the notion of a morphism of lax natural transformations:

Definition 3.3.19 Suppose that 0,7 : ® = @' are lax natural transformations between
2-functors ®, &' : A — A. A modification = : o~ (3 1is a collection of 2-cells =, : 0, = 7,
indexed by 0-cells a of A such that the equality

ga ®'f

(3.29)

holds for any 1-cell f : @ — b in A, and for any 2-cell v : f = g in A the following

equality
_____ o O e ¥
o ¥y = o (3.30)
......... q)gTb q>g7.b

holds.

Remark 3.3.20 It is obvious that lax natural transformations can be composed and that
for fixed 2-categories A, B we have the 2-quasicategory having all 2-functors from A to B as
0-cells, all lax natural transformations as 1-cells and all modifications as 2-cells. Also, we
can define the 2-quasicategory with all 2-functors as from A to B 0-cells, all pseudonatural
transformations as 1-cells and all modifications as 2-cells. O

In category theory, the notion of a (co)limit plays an important réle. A (co)limit
of a diagram D : D — K in a category K is a natural transformation between the
constant functor and D satisfying the well-known (co)universal property. Obviously there
are now several 2-categorical counterparts depending on the chosen concept of a functor
and a natural transformation. Those concepts differ in the sense that different types
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of (co)limits may be different for the same initial data (see [Bo94], Volume 1, Example
7.6.3). We need just a few of these concepts, namely, that of a laz limit of a 2-functor
between 2-categories, that of a bilimit of a pseudofunctor between 2-categories and that of
an indered limit. The last notion is a proper notion of a limit in enriched category theory
— a 2-category is precisely a category enriched over Cat. We will not need the full theory
of enriched category theory.

Definition 3.3.21 Suppose that D : D —» A is a 2-functor between 2-categories. Let a
be a 0-cell in A.

A constant 2-functor const, : D — A with value a sends each 0-cell to a, each 1-cell
to 1, and each 2-cell to 7,,.

A lazx cone on D with verter a is a lax natural transformation A : const, = D.

Denote by LaxCone(a, D) the category of lax cones on D with vertex a as objects
and modifications as morphisms. Any lax cone A\ : const, = D induces a functor
A(b) : A(b,a) — LaxCone(b, D) by composition with .

We say that a lax cone A : const, = D is a lax limit cone for D, if the functor 5\(b)
is an isomorphism of categories for any 0-cell b. By the usual abuse of language we will
sometimes call the vertex of a lax limit cone a lax limit.

As usual, lax limits (when they exist) are determined up to an isomorphism. This will
not, however, be always precisely what we want. Sometimes we require a limit determined
up to an equivalence. This is provided by the following notion of a bilimit.

Definition 3.3.22 Suppose that D : D — A is a pseudofunctor between 2-categories.
Let a be a O-cell in A.

A pseudocone on D with verter a is a pseudonatural transformation A : const, = D.

Denote by PseudoCone(a, D) the category of pseudocones on D with vertex a as
objects and modifications as morphisms. Any pseudocone A : const, = D induces a
functor A(b) : A(b,a) — PseudoCone(b, D) by composition with \.

We say that a pseudocone A : const, = D is a bilimit cone for D, if the functor 5\(6)
is an equivalence of categories for any O-cell b. By the usual abuse of language we will
sometimes call the vertex of a bilimit cone a bilimit.

If a bilimit exists, then it is determined up to an equivalence, where two 0O-cells a, b in
a 2-category are said to be equivalent, provided there are 1-cells f: a — b, g: b — a
and isomorphism 2-cells a : 1, = g - f, B: f - g = .

Example 3.3.23 Suppose that D : D — CAT is a small diagram. Regard the functor
D as a pseudofunctor. Then a bilimit of D exists. A pseudococone consisting of a
vertex K, functors P; : K — D(i) and comparison isomorphism natural transformations
7y @ D(u) - P, = P; which is a bilimit psudococone, can be described in the following
way:

K-objects are compatible threads. A compatible thread is a collection (x;, a,,), where
x; is an object of D(i) and a,, : D(w)(x;;) — x;, is an isomorphism in D(is) for a
D-morphism w : 4y — 75 such that the following coherence conditions are satisfied:

a;; = 1y forany j (3.31)

J



32 Chapter 3. Category Theory Tool Kit

Owyw; = Gy D(ws)(ay,) for any pair wy : j1 — ja, ws : jo —> J3 (3.32)

K-morphisms from (z;, a,,) to (y;, b,) are collections (f;), where each f; is a D(i)-
morphism from z; to y; and the following square commutes for any D-morphism
w:L— gt

D(w)(x;) D(w)(y;)
ayw by (333)
i fi Yi

Identities and composition in K are defined in an obvious way.
Each functor P; sends (z;, a,) to z; and (f;) to f;.

The isomorphism comparison natural transformation 7, : D(u) - P, = P; for
u : i —> j has as its value at (z;, a,,) the isomorphism 7, ({z;, ay)) = ay.

|

Definition 3.3.24 Suppose D is a small 2-category, A is a 2-category and ® : D — A,
W : D — Cat are 2-functors. Suppose a is a 0-cell in A.

A 2-natural transformation A : W = Cat(a, ®_) is called a (W, A)-cylinder over ®
with vertez a.

Denote by Cyl(W, Cat(a,®_)) the category of (W, A)-cylinders over ® with vertex a
as objects and modifications as morphisms.

Any (W, A)-cylinder over ® with vertex a A : W = Cat(a, ®_) induces by composition
a functor A(b) : A(b,a) — Cyl(W, Cat(a, ®_)).

We say that A : W = Cat(a, ®_) is a limit cone for ® indexed by W, if the functor
j\(b) is an isomorphism of categories for any 0-cell b.

In this setting, the 2-functor W is called an indexing type and the vertex of a limit
cylinder is called an indezed limit of ® indexed by W.

If the indexing W is a 2-functor with the one-morphism category as its constant value,
then we speak of a conical indexed limit of ®.

We say that A\ : W = Cat(a, ®_) is a bilimit cone for ® indezed by W, if the functor
A(b) is an equivalence of categories for any 0-cell b.

Remark 3.3.25 The dual notions of a lax limit and an (indexed) bilimit are a laz colimit
and an (indexed) bicolimit. The dual of an indexed limit (i.e. an indezed colimit) deserves
an explicit formulation: a colimit of ® : D — A indexed by W : D’ — C(Cat is a
2-natural transformation (called a colimit cocylinder) A : W =—> Cat(®-,a) with the
following universal property:
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for any O-cell b the functor A(b) : A(a,b) — CoCyl(W, Cat(®_,a)) induced by

composition is an isomorphism of categories.

(Where the definitions of cocylinders and of the category of cocylindres are straightfor-
ward.) Note that the indexing for colimits is now a contravariant functor!
Analogously one defines the notion of a bicolimit of ® indexed by W. a

Example 3.3.26 The following is a useful instance of an indexed limit.

Recall the unit 2-category Z of example 3.3.4. It is clear that a 2-functor ® from 7
picks up a O-cell in the codomain of . Let A be a 2-category, denote by 6, : Z — A the
2-functor with a value a and by dx : Z — Cat the 2-functor having a small category K
as its value. A limit of ¢, indexed by dk (if it exists) is called a cotensor of K and a and
the vertex of a limit cylinder is denoted by [K, a.

It is worthwhile to realize that if A = CAT then an indexed colimit of g indexed by d5
is the category [A, B] having functors from A to B as objects and natural transformations
between those functors as morphisms.

Thus, cotensors generalize powers. a

3.4 Ends, Kan Extensions

Definition 3.4.1 Let F,G : A x A — B be functors. A dinatural transformation
7:F — G from F to G is a collection (7,) of B-morphisms 7, : F(a,a) — G(a,a)
indexed by A-objects, such that for any A-morphism f : a — o’ the following diagram
commutes:

F(a,a) i G(a,a)

F(fila) Wj)

F(d',a) G(a,a’) (3.34)
F(12.) %)
F(d,d) - G(d',a)

A dinatural transformation from a constant functor A”? x A — B with value b to a
functor F' is called a wedge over F' with vertex b. A universal wedge is called an end of F'
and the vertex of such a wedge is denoted by [, F'(a,a). By abuse of notation [, F'(a,a)
will sometimes stand for the whole end wedge w, : [, F'(a,a) — F(a,a).

Remark 3.4.2 End is a special kind of limit, therefore all facts about limits apply to
ends. The dual notions are cowedge and coend (denoted by [* F'(a,a)). Unless explicitly

stated otherwise, when talking about (co)ends, the category A will be considered small.
O
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Given two functors F': A — B, G : A — B we denote by Nat(F, G) the class of all
natural transformations from F to G.

Lemma 3.4.3 (End Formula for Nat) Suppose F : A — B and G : A — B are
functors. Then end of the functor B(F_,G_) : A x A — Set exists and the sets
Nat(F,G) and [, B(Fa,Ga) are isomorphic.

Proof. See e.g. [ML71], Section IX.5. O

Definition 3.4.4 A [eft Kan extension of a functor F' : A — C along a functor G :
A — Bis a functor Lang(F) : B — C together with a natural transformation (called a
unit of the left Kan extension) n: F = (Lang(F)) - G, such that the data (Lang(F),n)
are universal in the following sense: given any other pair (H,7), where H : B — Cis a
functor and 7 : FF = H - (G is a natural transformation, then there is a unique natural
transformation p : Lang(F) = H, such that the diagram

F " (Lang(F)) -G
J{uc (3.35)
H-G

commutes.

Remark 3.4.5 The dual notion are: right Kan extension, counit of the right Kan exten-
ston. Unless explicitly otherwise stated, when talking about Kan extensions, the category
A will be considered small. O

Coends and left Kan extensions are tied together by the following result.

Lemma 3.4.6 If all copowers [1g(gap) F'a’ exist and if a coend Lb = [ [Ig(gap) Fla exists
for all b, then b Lb is an object function of Lang(F).

Proof. See [MLT71], Section X.4, Theorem 1. O

3.5 Accessible Categories

This section is devoted to fixing the notation for accessible categories. For motivation,
many examples and other results we refer to the books [MP89] and [AR94].

In this section A is a regular cardinal — i.e. an infinite cardinal of cofinality A (see
e.g. [JeT8]).

Definition 3.5.1 A diagram D : D — K is called:

1. A-directed, if the category D is a A-directed poset (that is, any subset of less than A
elements has an upper bound),
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2. M-filtered, if the category D is A-filtered (that is, any subcategory of less than A
morphisms has a compatible cocone).
The following notion is very useful:

Definition 3.5.2 A functor F' : A — B is cofinal, if for any B-object b the following
two conditions are satisfied:

1. There exists a morpism f : b — Fa for some A-object a.
2. For any pair f; : b — Faq, fo : b — Fay there exist A-morphisms ¢; : a1 — a

and ¢ : ag — a such that the equality Fg; - fi = Fgs - f5 holds.

Given a diagram D : B — K and a cofinal functor F' : A — B, then there is a
bijective correspondence between compatible cocones for D and D- H — see [AR94], 0.11
for details.

Remark 3.5.3 It is proved in [AR94], Theorem 1.5 and Remark 1.21 that:

1. A diagram is A-filtered iff it has a cofinal A-directed subdiagram.

2. A category has Mfiltered colimits iff it has A-directed colimits.

3. A functor preserves A-filtered colimits iff it preserves A-directed colimits.

O
Definition 3.5.4 An object x of a category K is called A-presentable, if the functor
K(z,_) : K — Set preserves A-filtered colimits.
Definition 3.5.5 A category K is A-accessible iff
(a) it has M-filtered colimits,

(b) the full subcategory of K consisting of all A\-presentable objects is equivalent to a
small category; a choice of such a small category is denoted by K,,

(c) for any K-object = the cocone K, /x is a A-filtered colimit cocone. (We will call the
corresponding diagram with the scheme K, /z a canonical diagram for z and denote
it by Cj.)

Remark 3.5.6 An important class of \-accessible categories are locally A-presentable

categories. A category is locally A-presentable iff it is A-accessible and (co)complete —
see [AR94], Corollary 2.47. O
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Definition 3.5.7 Let K, L be A-accessible categories. A functor F' : K — L is called
A-accessible, if it preserves M-filtered colimits, i.e. if F colimg D = colimy, F'D for any
small A-directed diagram D : D — K.

It is proved in [AR94], Theorem 2.26 that A-accessible categories are, up to an equiv-
alence of categories, precisely the free cocompletions of small categories w.r.t. A-filtered
colimits.

Definition 3.5.8 Let X be any category, let F' : X — Set be a functor. The comma
category 1/F is called the category of elements of F and is denoted by Elts(F’). The
obvious projection functor from Elts(F) to X sending f : (z,a) — (y,b) to f :a —> b
is denoted by OF.

Remark 3.5.9 It is convenient to regard Elts(F')-objects as pairs (z,a), where a is an
X%-object and z : 1 — Fla is a mapping (identified with an element x € Fa). The set of
Elts(F)-morphisms from (z,a) to (y,b) is a set of those X°’-morphisms f : « — b such
that y = Ff - x. O

Definition 3.5.10 A functor F' : A — Set, where A is a small category, is called
A-flat, if Elts(F) is a A-cofiltered category, i.e. if Elts(F)® is A-filtered. We denote by
Flaty(A) the category of all A-flat functors F' : A — Set and all natural transformations,
Ipn : A — Flaty(A) denotes the full embedding of A in Flaty(A) given on objects by
a— A, a).

Definition 3.5.11 A sketch is a triple S = (S, P, @), where S is a small category, P is a
set of cones in S and @ is a set of cocones in S. Given two sketches S; = (S;, P;, Q1) and
Sy = (Sy, P, Q2), a sketch morphism is a functor F : S; — S, which maps each cone of
P, to a cone in P, and each cocone in ()1 to a cocone in Q9.

Sketches, their morphisms and natural transformations obviously form a 2-category,
denote it by Sketch.

Definition 3.5.12 Given a sketch S = (S, P, @), then its Set-modelis a functor F : S —
Set which sends each cone in P to a limit and each cocone in () to a colimit in Set.

Obviously, models of a sketch form a category, if we take natural transformations as
morphisms between Set-models. Denote this category by MOD(S).

An important feature of accessible categories is that they can be given by essentially
small data. A A-accessible category can either be described by its (essentially) small
category of A-presentable objects or as a category of models of a small sketch. More
precisely:

Theorem 3.5.13 The following are equivalent for a category K:

1. K is A-accessible for some .
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2. K is equivalent to the category of the form Flaty(A) for some A\ and some small
category A.

3. K is equivalent to the category of Set-models of a sketch.

3.6 Notation for the Finitary Case

The following text is essentially on Ny-accessible categories. Almost everything, however,
can be generalized to A-accessible categories. We have restricted ourselves to the cardinal
Ny to keep an analogy with Domain Theory. The generalization to A-accessible categories
is always straightforward, and we believe that the results in case A = N, are sufficiently
typical.

Remark 3.6.1 We adopt the following shortened expressions:

e We say filtered and flat instead of Ry-filtered and Ny-flat. Instead of Flaty,(A) we
write A*.

e We say finitely presentable instead of Ny-presentable, an accessible category instead
of an Vy-accessible category. Instead of Ky, we write Kg, for the essentially small
category of finitely presentable objects in K.

e We say a finitary functor instead of an Ny-accessible functor.

|

We will explicitly emphasise the situations where generalizations to uncountable reg-
ular cardinals will not be possible.



Chapter 4

Categorical (GGeneralizations of
Domains

The idea of using categories as domains is advocated in the work of Daniel J. Lehmann:

... when considering non-deterministic programs the notions of complete par-
tial order, least fixpoints of continuous functions and domain equations have
to be generalized. It is not sufficient any more, when considering the process
of successive approximations converging to the final value, to look at the se-
quence of objects but it is also necessary to consider the way in which each
approximation is related to the preceding one, thus replacing a partial order
by a category and a least upper bound by a colimit.

[Leh76], p. 4

Lehmann also attributes the idea of having categories as domains to H. Egli. Domains
in [Leh76] are categories having colimits of countable chains (called w-categories) and do-
main morphisms are functors preserving these colimits (w-functors). Lehmann in [Leh76]
develops a fixed point calculus for this notion of a domain.

We choose a category having colimits of small filtered diagrams as a basic concept.
The reasons are:

e Filtered diagrams can be thought of as of a piece of information, which is “consistent
on finite subsets”.

e Filtered diagrams appear quite naturally in category theory and one can use a link
to the theory of accessible categories.

Besides of generalizing classical notions, we believe that viewing domains as categories
rather than partially ordered sets helps to clarify conceptually what is going on in Domain
Theory.

This chapter presents the basic generalizations of the classical definitions of Domain
Theory. Thus we provide here generalizations of

e (pointed) DCPOs — Remark 4.4.12,

e pointed algebraic DCPOs — Definition 4.1.1,

38



4.1 A Generalization of Pointed Algebraic DCPOs 39

e Scott domains — Definition 4.2.1,

and generalizations of morphisms between domains
e continuous maps — Definition 4.1.4,
e embedding-projection pairs — Definition 4.1.6.

We also give generalizations of the concepts of finitary closure and projection on a
domain — Definition 4.5.3.

4.1 A Generalization of Pointed Algebraic DCPOs

Definition 4.1.1 A category K which is finitely accessible and has an initial object is
called a generalized domain.

Remark 4.1.2 The definition of a generalized domain is a translation of a notion of
pointed algebraic DCPO from partially ordered sets to categories:

1. The existence of a least element has been generalized to the existence of an initial
object.

2. Compact elements generalize to finitely presentable objects.

3. The existence of directed sups and the possibility to express each element by the
sup of compact elements below it has been generalized to the requirement of finite
accessibility.

In fact, the notion of a finitely accessible category is a translation of a notion of an algebraic
DCPO to category theory. We need the existence of an initial object for technical reasons.
O

Remark 4.1.3 Let K be a generalized domain. Then it is easy to see that the small
category Kp, of representatives of finitely presentable objects in K has an initial object.
Conversely, if A is a small category with initial object, then its free cocompletion w.r.t.
small filtered colimits A* is a generalized domain (see e.g. [AR94], Theorem 2.26). O

As usual in Domain Theory, we introduce two notions of a morphism between gener-
alized domains. First, an obvious generalization of continuous maps.

Definition 4.1.4 Let K and L be generalized domains. A functor F' : K — L is called
finitary, if it preserves filtered colimits.

Lemma 4.1.5 Identity functors are finitary. The composition of finitary functors is a
finitary functor.
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The proof is trivial. The above lemma allows us to define the 2-quasicategory GDOM of
all generalized domains as O-cells, all finitary functors as 1-cells and all natural transfor-
mations between finitary functors as 2-cells.

Definition 4.1.6 Let K and L be generalized domains. A pair of finitary functors L :
K— Land R:L — K such that L 4 R is called a finitary adjunction from K to L.

This may seem too general: a natural generalization of the notion of an embedding-
projection pair is a notion of a finitary coreflection of a full subcategory.

Definition 4.1.7 A finitary adjunction L 4 R is called an (e,p)-adjunction if the unit of
the adjunction is an isomorphism.

Remark 4.1.8 Let us remark that our concept of an (e,p)-adjunction is broader than
the notion of an (e,p)-adjunction defined in [Ad97]. Addmek in [Ad97] requires the unit
of an (e,p)-adjunction to be the identity natural transformation. Our definition, however,
simplifies the reasoning about (e,p)-adjunctions.

In the context of categories the general notion of adjunction is, however, more natural,
easy to work with and there is a symmetry which the notion of an (e,p)-adjunction lacks.
We will show that much of the results known for embedding-projection pairs in Domain
Theory hold for finitary adjunctions too. O

Lemma 4.1.9 An identity functor has a finitary right adjoint. The composition of func-
tors with finitary right adjoints is a functor with a finitary right adjoint.

The proof follows from the well-known fact that left adjoints can be composed. The
above lemma allows us to define a 2-quasicategory GDOM' of all generalized domains as
0-cells, all functors with finitary right adjoints as 1-cells and all natural transformations
between them as 2-cells.

4.2 A Generalization of Scott Domains

In his paper [Ad97] Jif{ Addmek introduced a categorical generalization of a Scott domain,
namely the Scott complete category, and he proved that Scott complete categories possess
properties which enable them to serve as a basis for computer language semantics.

Definition 4.2.1 ([Ad97]) A generalized domain K which is boundedly cocomplete, i.e.
each diagram with a compatible cocone has a colimit, is called a Scott complete category
(SC category for short).

Remark 4.2.2 It should be mentioned that the definition of SC category is just a trans-
lation of the definition of a Scott domain to category theory:

1. The existence of a least element has been generalized to the existence of an initial
object.
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2. Compact elements generalize to finitely presentable objects.

3. The existence of directed sups and the possibility to express each element by the
sup of compact elements below it has been generalized to the requirement of finite
accessibility.

4. Subsets bounded from above have been generalized to consistent diagrams, i.e. dia-
grams having a compatible cocone. Instead of “diagram consistent in the category
K” we say “K-consistent diagram”.

Remark 4.2.3 Let K be an SC category. Then it is easy to see that the small category
Ky, of representatives of finitely presentable objects in K has:

1. an initial object (inherited from K),
2. colimits of finite consistent diagrams.

Conversely, the free cocompletion w.r.t. filtered colimits of any small category A with
initial object and colimits of finite consistent diagrams is an SC category (Example 1.3
in [Ad97]). This generalizes the well-known fact that any Scott domain is the ideal
completion of its complete upper semilattice of compact elements. O

Examples 4.2.4 There is a wealth of examples of SC categories:

1. Any Scott domain is an SC category.

2. Any locally finitely presentable category (see Remark 3.5.6) is an SC category. In
particular, any coherent Grothendieck topos (see [Bo94], Vol. 3, Chapter 6.5) is an
SC category.

O
Lemma 4.2.5 Let K be a generalized domain. The following are equivalent:
1. K is boundedly cocomplete.
2. K is boundedly complete (each diagram with a compatible cone has a limit).
Proof. See [Ad97], Theorem 1. O

In fact a Scott complete category is “not very far” from being locally finitely pre-
sentable:

Lemma 4.2.6 Suppose that K is a Scott complete category. Then the following are equiv-
alent:

1. K has a terminal object.
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2. K s locally finitely presentable.
Proof. Trivial. O

Remark 4.2.7 Let us say explicitly that due to being boundedly cocomplete and due to
the existence of initial object L, every SC category K has small copowers of any object.
Thus, for any K-object a we always have a functor a ® _ : Set — K defined on objects

as
a, in case x # ()
aQRQr = ]E[ #
1, otherwise

and defined on Set-morphisms in obvious way, such that we have an adjunction ¢ ® _ -
K(a,-).

Thus SC categories are never small unless they are Scott domains. In fact, let a be an
object of an SC category K and let k be an arbitrary cardinal number. Then the diagram
D, repeating a k-times has a compatible cocone, hence a colimit, say, c. If there are two
distinct parallel morphisms in K starting in ¢ and terminating, say, in b, then there are
2% distinct cocones on D,, hence K contains at least 2* distinct morphisms from c into b.
Thus K cannot be small. O

The following notion is inspired by topos theory (see e.g. [Joh77], Definition 7.11).

Definition 4.2.8 Let K be a generalized domain. Any finitary adjunction L 4 R from
Set to K is called a point of K. K is said to have enough points, if there is a small set
{L; 4 R; | i € I} of points of K such that the collection {R; | i € I} jointly reflects
isomorphisms.

Example 4.2.9 Any SC category K has enough points: By Remark 4.2.7 for any finitely
presentable object a the functor R, = K(a, ) has a left adjoint L, = a®_. Then L, 4 R,
is a point of K and the collection {R, | a is a Kp,-object} jointly reflects isomorphisms.

O

Lemma 4.2.10 Let K be a generalized domain. If L 4 R is a point of K, then R is
isomorphic to K(a,_) for some finitely presentable object a having copowers.

Proof. Any right adjoint R to Set is (isomorphic to) a representable functor. The
representing object must be finitely presentable, since R is supposed to preserve filtered
colimits. O

Lemma 4.2.11 Let K have enough points. Suppose D : ¥ x D — K is a diagram
where F is finite and D is filtered. Suppose that limy D(f,d) exists for any d. Then if
lim colimy D(f, d) ezists, it is isomorphic to colimglimy D(f,d).
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Proof. We can assume that the collection {K(a,_) | a is a Kz,-object} jointly reflects
isomorphisms. Since any functor K(a, -) is flat we have

K(a,lims colimy D(f,d)) = lim;K(a,colimy D(f,d)) = limy colimy K(a, D(f, d)) =
= colimylimsK(a, D(f,d)) = K(a, colimg lim;D( f, d))

because finite limits commute with filtered colimits in Set. O

Thus we obtain a generalization of the well-known fact that finite infs commute with
directed sups in Scott domains.

Corollary 4.2.12 In any SC category (ezisting) finite limits commute with filtered col-
1mits.

It is obvious that all SC categories, all finitary functors and all natural transformations
between them form a 2-quasicategory, let us denote it by SC.

It is proved in [Ad97], Theorem 3 that SC, — the underlying quasicategory of SC —
is cartesian closed. Thus, given SC categories K, L, the quasicategory SC(K, L) having
all finitary functors from K to L as objects and all natural transformations as morphisms
is an SC category.

We also define SC! as the 2-quasicategory of all SC categories, all left adjoints which
have finitary right adjoints and all natural transformations between them.

Lemma 4.2.13 Let K, L be SC categories, x, resp. y objects of K, resp. L. Then the
functor (z,y) : K — L defined by the composition y® _ - K(z, ) is a finitely presentable
object of SC(K,L). Moreover, every finitely presentable object of SC(K,L) is a finite
colimit of a diagram on functors of the form (z,y).

Proof. See [Ad97], Lemma 1. O

Theorem 4.2.14 (Yoneda Lemma for SC) Let K, L be SC categories, F : K — L
a functor. Then there is a bijection of hom-sets SC({z,y), F) and L(y, Fx).

Proof. See [Ad97], Lemma 1. O

4.3 Representations of Finitary Adjunctions

In this section we will represent the 2-quasicategory GDOM' by a certain legitimate 2-
category. Recall the notion of a finitary adjunction from 4.1.6.

Lemma 4.3.1 Let K and L be generalized domains. Let L 4+ R, L : K — L and
R :L — K be a finitary adjunction. Let Kz, be a small category representing all finitely
presentable objects in K, let I : Kg, — K be the inclusion. Then there is a choice of a
small category Ly, and a functor F : Kg, — Lg, such that the following hold:

1. The equality LI = JF holds, where J : L, — L is the inclusion.

2. F preserves initial object.
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8. The comma category F'/y is filtered for any Lg,-object y.

Proof. Since L 4 R is a finitary adjunction, the functor L clearly preserves finitely
presentable objects. Therefore one can choose a small category Lg, in such a way that
the image of LI is contained in Lg,. Define the functor F' as the domain-codomain
restriction of L and then Conditions 1. and 2. of the theorem clearly hold.

To verify Condition 3. take any Lg,-object y. Since J is a full embedding, LI = JF
and L 4 R, the categories F'//y and I/RJy are isomorphic. The latter category is trivially
filtered. O

Lemma 4.3.1 motivates the following definition:

Definition 4.3.2 Suppose that A and B are categories having initial object. A functor
F : A — B is called normal if it preserves initial object and the category F'/b is filtered
for any B-object b. A functor which is simultaneously normal and a full embedding will
be called a normal embedding.

Lemma 4.3.3 The identity functors are normal. The composition of normal functors is
normal.

The proof is trivial. The above lemma allows us to define a 2-quasicategory NORM of
all categories with initial object as 0-cells, all normal functors as 1-cells and all natural
transformations as 2-cells. The legitimate 2-category of all small categories with initial
object as 0-cells, all normal functors as 1-cells and all natural transformations as 2-cells
will be denoted by norm. Analogously we define the 2-quasicategory NORM, with all
normal embeddings as 1-cells and the legitimate 2-category norm,.

Normal functors induce finitary adjunctions in the following sense. Recall that A*
denotes the category of all flat functors from A° to Set and all natural transformations
(Definition 3.5.10).

Lemma 4.3.4 Let A and B be small categories having initial object, let F': A — B be
a normal functor. Then F can be extended to a finitary functor L : A* — B* (i.e. L
fulfills LIn = IgF') such that L has a finitary right adjoint R : B* — A™.

Proof. Define L as Lany, (IgF) and R as Langyr(I5). Both of these Kan extensions
exist, since they can be given pointwise as filtered colimits:
For any A*-object = define the functor £, : In/z — B” as follows:

the functor £, assigns the B*-object IgFa to every I /z-object h : Iya — z,

the functor £, assigns the B*-morphism IgFg : IgFla — IgFd’ to every I/z-
morphism Ixg: (h: Ipna — x) — (B : Ipd' —> x).

Then Lz is a colimit of £,. Denote the colimit cocone by A#). For any A*-morphism
f:x —> ', Lf is the unique B*-morphism such that for any I, /xz-object h : Iya — ©
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the triangle
A@) (R)

L,(h) Lz
\ / (4.1)

A (fh) Ly
Lx'
commutes.

For any B*-object y define the functor R, : IgF/y — A" as follows:
the functor R, assigns the A*-object Ixa to every IgF/y-object h : IgFa — y,

the functor R, assigns the A*-morphism Ipg : [pya — Iprd' to every IgF/y-
morphism IgFg: (h: IgFa — y) — (B : Ipd' — y).

Since F' is normal, IgF/y is filtered and Ry is a colimit of R,. Denote the colimit cocone
by p®. For any B*-morphism f : y — ¢/, Rf is the unique A*-morphism such that for
any IgF'/y-object h : IsF'a — y the triangle

pW)(h)

Ry (h) Ry
(4.2)
p(y')% A
Ry

commutes.

Both L and R preserve filtered colimits by definition. It remains to prove that L - R.
To do so we will define natural transformations 1 : 1ax = RL and € : LR = 1p+ and
we will verify the triangle identities for them.

Definition of n, : z — RLxz. Recall that z is a filtered colimit of a canonical diagram
C, : In/r — A*. Denote the colimit cocone by @ : C, — z. We will use the fact
that k(@ (h) = h for any I /a-object h : Ina — x. Define 7, as the unique morphism
such that for any I, /a-object h : Ina — x the triangle

k@) (h

Cy(h) ®) x
\ / (4.3)
p(Lm) (Lh) Nz
RLz

commutes. We have made use of the fact that C,(h) = Iya = Rp,(Lh).
The collection (7)) forms a natural transformation: take any A*-morphism f: 2z —
z'. It suffices to prove that

N - f - @ (h) = RLf - 0y - 6@ (h)
for any I /z-object h : [sa — x. This holds due to the above definitions:

RLf 11, - 5 (h) = RLf - p“(Lh) = p")(Lf - Lh) = s - 650 (f - B) = mor - f - ) ().
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Definition of ¢, : LRy — y. Recall that Ry is a filtered colimit of the diagram R,
and that L preserves that colimit. Define €, as the unique morphism such that for any
IgF/y-object h : IgFa — y the triangle

(€7)
LR, (h) 2

x / (4.4)

Y

commutes. We have made use of the fact that for any IgzF/y-morphism IgFg : (h :
IgFa — y) — (B : [gFa' — y) the equalities LR, (g) = LIxg = IgFg hold.

The collection (e,) forms a natural transformation: take any B*-morphism f : y — ¢/'.
It suffices to prove that

ey - LRf - Lp¥) (h) = f - &, - Lp™ ()
for any IgF'/y-object h : IgF'a — y. This holds due to the above definitions:
&y - LRf - LpW (k) = Ey .Lp(y’)(f ‘h)y=f-h=f-¢g,- Lp® (h).
The triangle equality €7, - Ln = 1;. Let x be any A*-object. It suffices to prove that
€rg - Lmg - Lh = Lh

for any I, /a-object h : Iya — z, since Lh = Lk® (h) is a colimit cocone. This is true
due to the above definitions: ez, - (L1, - Lh) = er, - Lp'*® (Lh) = Lh.

Before proving the second triangle identity we will verify ny, o = p“/2%)(1;,5,) for any
A-object a. Denote p(LIA“)(ll Fa) a8 7q. Recall that ny,, is the unique morphism such
that for any I, /Isa-object b’ : Iya — Ipa the triangle

(IA“) ’
Crpa() ") Ina
\ (4.5)
LIAa LK nféa
RL]AG

commutes. Therefore it suffices to prove that the triangle

IAU,’ h IA(L
\ / (4.6)
RLK 1y Ta

RLIa

commutes. Since I, is full, A’ = I,k for some k : @' — a. Then IgFk : (IgFk :
IgFa' — IgFa) — (l1yr, : IFa — IgFa) is a IgF/IgFa-morphism, therefore the
following triangle

hl

RIBFa (IgFk) RigFa 1IBFa)

(IBpm / (4.7)

RIBFU,
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commutes. Since R[EFa(IBFk) =Izd = RIEFa’(llgFa’)a the following triangle

T,

Rigra (lgFa) . RIgFd
\ / (48)
p(IEF”') (IEF]C) RLA'

RIEFG

commutes by the definition of R on morphisms. Putting (4.7) and (4.8) together proves
that 1, = 74.
The triangle equality Re - ng = 1g. It suffices to show that

Rey - ngy - p¥(h) = p¥ (h)

for any IgF/y-object h : IgFa — y. The equality ng, - p® (k) = RLpY) - n;,, holds
due to the naturality of n. The equality Re, - RLp™ (h) = Rh holds by the definition of
e. Using the fact that 7;,, = 74, and the definition of R on morphisms we obtain that
Rh -y = p¥(h). The equality Rey - nry - P9 (h) = p¥ (h) now follows. O

Remark 4.3.5 The proofs of Lemmas 4.3.1 and 4.3.4 could have been used verbatim
with “filtered” replaced by “A-filtered” for any regular cardinal \. O

Thus we obtain the following corollary:

Corollary 4.3.6 (Adjoint Functor Theorem for \-accessible Categories)
Let X\ be a regqular cardinal. Suppose that K and L are A-accesible categories having initial
object. Let L : K — L be a A-accessible functor. Then the following are equivalent:

1. L has a A-accessible right adjoint.

2. L preserves A-presentable objects and if we denote by F : Ky, — L, the domain-
codomain restriction of L, then the comma category F/b is \-filtered for any L, -
object b.

We now show how (the finitary version of) the preceding corollary modifies for finitary
adjunctions between Scott complete categories.

Lemma 4.3.7 Let K and L be SC categories. Let L4 R, L : K —Land R:L — K
be a finitary adjunction from K to L. Let Kg, be a small category representing all finitely
presentable objects in K, let I : Kg, — K be the inclusion. Then there is a choice of a
small category L, and a functor F : Kg, — Lg, such that the following hold:

1. The equality LI = JF holds, where J : L, — L is the inclusion.
2. F preserves initial object.

3. If D : D — Kg, s a finite non-empty diagram s.t. FD is consistent, then D 1s
consistent and F(colim D) 2 colim(F' D).
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Proof. Since L 4 R is a finitary adjunction, the functor L clearly preserves finitely
presentable objects. Therefore one can choose a small category Lg, in such a way that
the image of LI is contained in Lg,. Define the functor F' as the domain-codomain
restriction of L and then Conditions 1. and 2. of the theorem clearly hold.

To verify Condition 3. take any finite non-empty diagram D : D — Kg, such that
F'D is consistent. Let p : FD = b be a compatible cocone for F'D. Then D and u
determine a finite non-empty diagram H : D — F'/b defined by

® iy: FDd — b on D-objects d,
e FDob: (ug: FDd — b) — (pg : FDd' — b) on D-morphisms 6 : d — d'.

By Lemma 4.3.1 we know that F'/b is filtered, thus there is a compatible cocone on H
yielding a compatible cocone on D. Therefore the colimit of D exists in Ky, and it clearly
is preserved by F'. O

This motivates the following definition:

Definition 4.3.8 A category is said to be finitely consistently cocomplete (FCC category
for short) if it has colimits of finite consistent diagrams (including the empty diagram).
A functor F : A — B between FCC categories is called finitely consistently cocontinuous
(FCC functor) if it fulfills the following condition:

given a finite diagram D : D — A s.t. F'D is consistent, then D is consistent and
F(colim D) 2 colim(F' D).

An FCC functor which is a full embedding is called an FCC embedding.

Lemma 4.3.9 The identity functors are FCC functors. The composition of FCC functors
s an FCC functor.

The proof is trivial. The above lemma allows us to define a 2-quasicategory FCC of all
FCC categories as 0-cells, all FCC functors as 1-cells and all natural transformations as
2-cells. The legitimate 2-category of all small FCC categories as 0-cells will be denoted by
fcc. Analogously we define the 2-quasicategory FCC, with all FCC embeddings as 1-cells.
The legitimate 2-category of all small FCC categories, all FCC embeddings and all natural
transformations will be denoted by fcc,.

Lemma 4.3.10 Every FCC functor between FCC categories is normal.

Proof. Let F': A — B be an FCC functor between FCC categories. Since F' preserves
initial objects, it suffices to prove that the comma category F/b is filtered for any B-object
b.

F/b is nonempty, since it contains the object F'1. — b. Take any finite non-empty
diagram D : D — F/b. For any D-object d we have an F/b-object fq: Faq — b and
for any D-morphism 6 : d — d', D§ : f; —> fg is an A-morphism D¢ : ag — ag such
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that the triangle

A . (4.9)

commutes. Then D induces a finite non-empty diagram C': D — A defined by C'd = a4
and Cd = D¢ for any D-object d and any D-morphism 6 : d — d’. Moreover, the
collection (f;) forms a natural transformation v : FC' = b, i.e. FC is B-consistent.
Then C has a colimit Kk : C = a and F preserves it. Therefore there is a unique
f : Fa — b such that the triangle

Fhy

Fad Fa
4.10
N o
b
commutes for any D-object d. We have proved that F'/b is filtered. O

Corollary 4.3.11 Let A and B be small FCC categories, F' : A — B be FCC functor.
Then F induces a finitary adjunction L 4 R, L : A* — B*, R : B* — A™ from A™ to
B

Proof. Use Lemmas 4.3.10 and 4.3.4. O

It follows from considerations in [AP96] that GDOM' cannot be equivalent to any
category. We will repeat the argument here (see Lemma 4 of [AP96]): A category is
required to have only a set of morphisms between any two of its objects. However, there
are generalized domains K, L such that GDOMl(K, L) is as large as the collection of all
subclasses of the class of all sets: put K = L = Set, then for each class C of sets there
exists a functor

Fe : Set — Set  with F¢ = 1g¢ and Fex =z iff x € C.

The functor Fg is clearly a finitary right adjoint. The collection of all subclasses of the
class of all sets forms a conglomerate which is not a class. Therefore there cannot be an
equivalence functor from GDOM' to any category.

We will show that however, GDOM' is biequivalent to the 2-category norm (recall
Definition 3.3.12).

Theorem 4.3.12 (Representation of Finitary Adjunctions)
norm and GDOM' are biequivalent.

Proof. Define a pseudofunctor ® : norm — GDOM! on 0-cells by ®(A) = A*. The
definition of
®4p : norm(A, B) — GDOM'(®A, ®B)

is as follows:
Cup(T: F=G)=7":F"=G"
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where F* = Lan;, (IgF), G* = Lany, (IgG) and 7* is the unique natural transformation
with 7°I5 = IgT. (Use the definition of a left Kan extension and the fact that I, and Iy
are full embeddings.)

The assignment @, p is a functor: given 7 : F = G, 0 : G = H in norm(A, B), we
have that (o7)* = o*7*, since (Igo) - (Ig7) = Ig(0 - 7) and (0*1) - (7*1y) = (0*7*)15 by
the interchange law for horizontal composition. Analogously one verifies the preservation
of identities.

We will show that ® bears a structure of a pseudofunctor.

1. Given F': A — B and G : B — C in norm, denote by
orc: Pp,c(@)Pap(F) = Pac(GF)

the unique natural transformation with prgla = 1(gr)- I (which exists since G*,
being a left adjoint, preserves left Kan extensions — see [ML71], Section X.5, The-
orem 1). It is clear that ¢ ¢ is a natural isomorphism.

2. Given a 0-cell A in norm, denote by

YA i Paa(la) = laa)

the unique natural transformation with ¢alfp = 17,.1,. It is clear that ¢, is a
natural isomorphism.

3. We will verify the coherence conditions which will show that the triple (®, p, 1)) is
a pseudofunctor.

Associativity coherence (cf. (3.18)): given 1-cells FF: A — B, G : B — C and
H : C — D in norm we are to prove that the diagram

H*(G*F*) = (H*G*)F* 2" (HG)*F*
H*pra YrHG (4.11)
H*(GF)* (HGF)*
$YGF,H

commutes. It suffices to show that for any A*-object z and any I, /z-object h :
Ipa — z it holds that

(SDGF,H)z : (H*SDF,G)z -H*G*F*h = ((PF,GH)z : ((PG,HF*)m - H*G*F*h.

Due to the naturality of ¢’s it suffices to show that
H*G"F*h - (prerla)a - (pa,plpF)a = H'G*F*h - (parala)e - (H ¢rala)a-

This is true, since all ¢’s are identities when evaluated at finitely presentable objects.
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Analogously one verifies the identity coherences (cf. (3.19)):

F* F*
F*-1, = F* 1y lg - F* ve 1g- - F*

(PIA,F 1 (PF,IE 1 (4.12)
(F-1p)" - F* (1g- F)* - F*

We use the fact that all ¢/’s evaluated at finitely presentable objects are identities.

The pseudofunctor (P, ¢, 1) is a biequivalence.

In fact, Condition (a) in the definition of biequivalence requires any generalized domain
K to be equivalent to a category of the form A* for some norm-object A, see 3.5.13.
Condition (b) in the definition of biequivalence requires ®, g to be full and faithful and
essentially onto on objects. ®, g is full and fathful by definition and any 1-cell L :
A* —s B* in GDOM! is isomorphic to F™* for a 1-cell F': A — B in norm, where F'is a
domain-codomain restriction of L. O

Corollary 4.3.13 The biequivalence ® of Theorem 4.3.12 can be restricted to a biequiv-
alence of SC' and fec.

The biequivalence ® of Theorem 4.3.12 also allows us to define an interesting class of
generalized domains.

In Domain Theory there is an important class of domains — the so called SF'P domains
(or bifinite domains). SFP domains (SFP stands for “sequence of finite posets” ) were orig-
inally defined as colimits of countable chains of embedding parts of embedding-projection
pairs between finite posets with least elements (see e.g. [GS90] for details).

Countable posets (D, C) arising as posets of compact elements of SFP domains can
be characterized by the following property:

if X C D is a finite set, then there is a finite set A, such that X C A and the
embedding of (A,C) in (D, C) is a normal embedding,.

Posets having the above property are called Plotkin posets in [GS90]. We propose the
name an Rgy-Plotkin category for their obvious categorical generalization.

Recall from 3.1.1 that an Ny-category is a category with countably many objects and
finite hom-sets.

Definition 4.3.14 A Nj-category K with an initial object is called an Ry-Plotkin category
if each finite diagram D : D — K factors through a normal embedding F' : A — K
where A is a finite category with an initial object.

We need the following easy lemma:
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Lemma 4.3.15 Suppose that the following triangle

F

A

N

C

B

of full embeddings commutes and that categories A, B, C have initial objects. If both H
and G are normal embeddings, then so is F'.

Lemma 4.3.16 Let K be an Rg-category with an initial object. Then the following are
equivalent:

1. K s an Ng-Plotkin category.

2. K is a colimit of a countable chain formed by finite Ny-Plotkin categories and by
normal embeddings.

Proof. 1=-2: This is clear, if the category K is finite. For K infinite, enumerate K-objects
as {ag, a1, ...} such that ap = L. The chain of normal embeddings

(Fii1 1 Ky — Ky [ 0> 0)

between finite Ny-Plotkin categories is defined as follows:

K, is the full subcategory of K on the object ay. The full embedding E, : K; — K
is clearly normal.

Suppose we have defined K; and a normal embedding E; : K; — K. Pick up the
least number n such that a, is not a K;-object. Define L as the full subcategory of K
on all K;-objects and a,,. Denote by £ : L — K the full embedding. Since K is an
Ro-Plotkin category, E factors through a normal embedding F;; : K;,; — K. Define
Fiiv1 : K; — K, as a full embedding. The functor Fj;;; is a normal embedding by
Lemma, 4.3.15.

It is clear that (E; : K; — K | ¢ > 0) is a colimit cone of (F} ;41 : K, — K, [ i > 0).

2=1: Trivial. O

4.4 Representations of Finitary Functors

In this section we intend to generalize the correspondence between
continuous functions between (Scott) domains, and
approximable relations of subposets of compact elements of (Scott) domains.

In Domain Theory, given two (Scott) domains (D, ), (E,C,), then a continuous
mapping (i.e. a finitary functor) f : D — E is fully described by the following binary
relation R C A X B: A = Dg,, B = Ep, are the subposets of compact elements and aRRb
iff b Ty f(a). The relation R satisfies the following conditions:
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1. For each a € A there exists b € B such that aRb.
2. If aRb, a T, ' and V' T, b, then o' RY'.
3. If aRb; and aRb,, then there exists b € B such that by Ty b, by C5 b and aRb.

Given two posets (A,C;), (B,Cy) having least element, any relation R satisfying the
above conditions 1.-3. is called an approrimable relation from A to B. This gives rise
to a continuous map f : A* — B* between the ideal completions A* of A and B* of B
defined by f(I) = {b € B | aRb for some a € I} (see [SLG94], Chapter 6 for details).

There is a categorical generalization of relations between (partially ordered) sets —
the notion of a distributor. Recall ([Bo94], Volume 1, Section 7.8) that a distributor

0:A —>B

between small categories is a functor ¢ : B” x A — Set. Given distributors ¢ : A —— B

and ¢ : B —— C, their composition is the distributor ¢ - ¢ : A —o— C defined on objects
as follows:

Y- (e a) (chb x (b, a))/w (4.13)
where ~ is the least equivalence with

(¥ (Le, £)(2),9)) ~ (2, 0(f, 1a)(y)) (4.14)

for x € ¥(c,b), y € (b',a), f:b — b. We denote the equivalence class of (u,v) by
[u,v]. The distributor v - ¢ is defined on morphisms as follows:

Veo(fi9):v-plc,a) — ¥-p(d,d)
[u,v] = [$(f, 16)(u), ©(1s, 9)(v)] .-

This composition is associative up to isomorphism. If we define the distributor
ia A —o> A (4.15)

to be the hom-functor, then i,’s serve as identities (up to isomorphism) for composition
of distributors. Thus we obtain a biquasicategory DIST of distributors with all small
categories as 0-cells, all distributors as 1-cells and all morphisms between distributors (i.e.
all natural transformations between the respective functors) as 2-cells (see [Bo94]).

Example 4.4.1 Suppose (A, ;) and (B, Cs) are partially ordered sets having least ele-
ments. Let R be an approximable relation from A to B. Regard these partially ordered
sets as categories and denote them by A and B and define

o(b.a) = {{*}, if aRb

0, otherwise

Condition 2. from the definition of an approximable relation says that p is a functor
p: B? x A — Set, in other words a distributor p : A —— B. Conditions 1. and 3. of
the definition of approximable relation can be summed up as follows: for any A-object a,
the functor p(_,a) : B — Set is flat. O
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The above example motivates the following definition:

Definition 4.4.2 Let A, B be small categories having initial objects. A distributor ¢ :
A —— B is called flat, if for each A-object a the functor ¢(_,a) : B — Set is flat.

Remark 4.4.3 Flat distributors appear in [JW78| under the name left flat profunctors.
O

Remark 4.4.4 The one-morphism category 1 has an initial object and a distributor
¢ 1 —> A is flat iff ¢ is (isomorphic to) a flat functor from A’ to Set. Thus, any
generalized domain K is equivalent to a category of flat distributors from 1 to Kg, and
natural transformations between them. O

Lemma 4.4.5 There is a biquasicategory whose 0-cells are all small categories having
initial object, 1-cells are all flat distributors with composition given by (4.13) and identi-
ties (4.15) and 2-cells are all morphisms between flat distributors.

Proof. Let us prove the appropriate axioms of a biquasicategory (cf. 3.3.9).
It is clear that the identity distributor 74 : A —o— A is flat.

Let ¢ : A ——= B and ¢ : B —— C be flat distributors. Choose any A-object a. We
have to show that the category Elts(y) - ¢(_, a)) is cofiltered.

e Elts(¢) - ¢(_,a)) is nonempty — this is clear.

e Let [u1,v1] € ¥-p(c1,a) and [ug, va] € - p(ca, a), that is uy € ¥(c1,b1), v1 € p(b1,a)
and uy € ¥(ca, be), v2 € @(by,a) for some B-objects b; and by. Since ¢(_,a) is flat,
there exist a B-object b, an element v € ¢(b,a) and B-morphisms f; : by — b
fo 1 by — b such that vi = ¢(f1,1,)(v) and va = @(f2,1,)(v). The following
identities hold by (4.14):

[u17 Ul] = [Ul, go(fla 1(1)(,”)] = [w(lcli fl)(ul)ﬂ ’U] ’
[u2; UZ] = [UQ: QO(fZ; 1(1)(’”)] = [w(lcw fg)(ug), ’U] .

Put u; = 1/)(101, f1)(’U,1) € ’(/J(Cl, b) and uy = 1/)(102, fQ)(’LLQ) € ’(/J(CQ, b) Since 1,[) is ﬂat,
there exist a C-object ¢, u € 9(c,b) and C-morphisms g; : ¢; —> ¢ go : ca —> ¢
such that 4, = ¥(g1,15)(u) and 4y = ¥(go, 14)(u). Then [u,v] € ¥ - ¢(c,a) is the
vertex of a cone for [u;,v1] and [ug, ve] formed by ¥ - (g1, 1,) and 9 - v(g2, 1a)-

e Suppose that ¥ - ¢(f1,1,) and ¥ - p(fo, 1,) are parallel morphisms from [u1,v1] € 9 -
o(c1,a) to [ug, va] € Y-@(cg,a), where uy € ¥(cy,by), v1 € (b1, a) and uy € Y(co, ba),
vg € @(by, a) for some B-objects b; and by.

Since both ¥ - ¢(f1,1,) and ¥ - ¢(f2,1,) are parallel morphisms from [ui,v1] €
Y- (cr,a) to [ug, ve] € P - (ce, a) we have that

V- o(f1; 1a) [u2, v2] = ¥ - ©(f2, 1a) [ug, va] = [u1,v1] (4.16)
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On the other hand, by (4.14) we have

¢ ’ (P(fla 1a) [U’?a UQ] = [w(fla 1b2)(u2)’ 90(1b2’ 1a)(U2)] = [w(fla 152)(u2)’ UQ] (417)

since ¢(1p,,14)(v2) = ve. Similarly the identities

'¢ ’ (P(f% 1a) [U’?a UQ] = W(f% 1b2)(u2)’ 90(1b2’ 1a)(U2)] = W(f% 152)(u2)’ UQ] (418)

hold. Thus if we put a1 = ¥(f1, 1p,)(u2) € ¥(c1,b2) and us = VP (fo, 1p,)(uz) €
(e, be), we have that [u1, ve] = [tg, ve]. By the definition of the equivalence ~ in
the composition of distributors there is a k£ > 0 such that there exist

- a finite zig-zag of B-morphisms m; : 1y — z1, mo @ To — X1, ..., Moy :
Top — Tok—1 with Ty = Tog — bg,

- a k-tuple g; € p(z;,a) with gg = gox, = 2,
- a k-tuple h; € p(c1, ;) with hg = Uy, he, = 1,

such that the corresponding m;’s and g;’s form a finite non-empty diagram D in
Elts(¢(_, a)) and the corresponding m;’s and h;’s form a finite non-empty diagram

in Elts(¢(c1,))-

Since the distributor ¢ is flat, the diagram D has a compatible cone in Elts(¢(-, a)).
Explicitly, there are a B-object b, an element o € ©(b,a) and a k-tuple of B-
morphisms g; : x; — b such that the corresponding m;’s and g;’s commute in
B.

Since gy = gor = Va2, ©(Jo, o) and ©(gok, 1ls) form a parallel pair of morphisms in
Elts(p(_,a)) from o € ¢(b,a) to vy € ¢(by,a). Since ¢ is flat, these two morphisms
can be equalized in Elts(o(_,a)). Explicitly, there are a B-object b, a B-morphism
g:b—band v € ¢(b,a) such that

v = ¢(g,1a)(v) (4.19)
and
990 =9 Gk (4.20)
Define
U= ¢(161’g ) gO)(ﬂl) = w(lclag ) ng)(ﬂ'Q) € w(cla b) (421)
and
U= 1Y(1ey, g - o) (u2) € Y(c2,b) (4.22)

By definition, ¥(fi,1;) and v¥(fs,1,) are parallel morphisms from @ € (c,b) to
U € 1(co,b) in Elts(¢(-,b)). Since v is flat, these two morphisms can be equalized
in Elts(¢(_, b)). Explicitly, there are a C-object ¢, a C-morphism f : ¢o — ¢ and
u € ¥(c, b) such that

i =(f, 1) (u) (4.23)

and

f-h=Fff (4.24)
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We will prove that v - ¢(f, 1,) equalizes the pair ¥ - ¢(f1,14), ¥ - ©(f2, 1,) in Elts(t) -
(-, a)). It suffices to show that v - ¢(f,1,) is a morphism from [u,v] € ¥ - ¢(c, a)
to [ug, vo] € ¥ - p(cq,a), i.e. that

- o(f, 1a) [u, v] = [ug, vs] (4.25)

holds.

This is true, since ¥ - o(f,1,) [u,v] = [¢¥(f,1s)(u),v] by (4.14). The equation
[¥(f, 1p)(u),v] = [t,v] holds by (4.23) and we have that [@,v] = [¢(1c,, 9 - Jo)(u2), V]
holds by (4.22). By (4.14) the identity [¢)(1c,, g - o)(u2),v] = [ua, (g Jo, 1a) (V)]
holds. Finally, by (4.19), we have [ug, (g - Go, 1a)(v)] = [ug, ve], thus (4.25) holds.

The associativity isomorphisms (cf. (3.13))
Qo 2V () —> (F-9) ¢ (4.26)

for flat distributors ¢ : A ——= B, ¥ : B ——= C, ¥ : C ——= D are defined pointwise as

follows: an element [h, [g, f]] € V- (¢ - ¢)(d, a) is sent to [[h, g], f] € (V- ) - p(d, a).
The right and left identity isomorphisms (cf. (3.14))

Poi@-ia—>¢@ and A,:ig-p — @ (4.27)

for ¢ : A —o— B are defined pointwise as follows: p,, sends [g, f] € ¢ -is(b,a) tog- f €
©(b,a). Analogously, A\, sends [g, f] € ig - ¢(b,a) to g- f € ¢(b,a).

We omit the routine calculations which show that the equalities (3.13) and (3.14) hold
for a;, p and A. O

The biquasicategory of flat distributors and their morphisms from the last lemma is
denoted by FLAT.

Notation 4.4.6 Suppose that K, L are generalized domains and that ' : K — L is a
finitary functor. Then we denote by F, the following flat distributor F, : Kgn —o> Lgy:
Define Fi(b,a) = L(b, Fa) on objects. F, is defined on morphisms as follows: for
f:b — bin Lg,, and g : a — a' in Ky, the function F,(f,g) : Fi(b,a) — F.(V',a’)
assigns Fig-h- f to h € F,(b,a).
Since the category Elts(F,(_,a))° is isomorphic to the filtered category J/Fa, the
distributor F is flat. O

Notation 4.4.7 Suppose that A, B are small categories having initial object and that
¢ 1 A —— B is a flat distributor. Then we denote by F,, a left Kan extension of the
following functor G : A — B* along the full embedding of A into A*:

G(a) = ¢(_,a) on objects. Since ¢ is flat, G(a) is a B*-object. Any morphism
f :a — o induces a natural transformation Gf : Ga — Ga' defined pointwise as the
map (Gf)y : @(b,a) — (b, ad’) sending x € @(b,a) to p(1s, f)(z) € p(b,d'). G is clearly
a functor.

By definition, F, is a finitary functor. O
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We will prove that the processes described in 4.4.6 and 4.4.7 are essentially inverse to
each other. Recall that GDOM denotes the 2-quasicategory having all generalized domains
as 0-cells, all finitary functors as 1-cells and all natural transformations as 2-cells.

Theorem 4.4.8 (Representation of Finitary Functors)
GDOM and FLAT are biequivalent.

Proof. Recall that we have chosen for each generalized domain K a fixed small category
Ky, representing all finitely presentable objects of K.
Define a pseudofunctor ® : GDOM —; FLAT on 0O-cells by ®(K) = Kg,.
The functor
Ok 1, : GDOM(K, L) — FLAT(®(K), ®(L))

is defined as follows: ®k (7 : FF = G) = 7, : F, = G,, where F, and G, are defined
as in 4.4.6 and 7.(b,a) : Fi(b,a) — G.(b,a) is the map sending every L-morphism
f:b— Fator,-f:b— Ga. Then the collection 7. = (7.(b,a)) is a natural
transformation and the assignment @y, is clearly a functor.

Next, we will show that ® bears a structure of a pseudofunctor.

1. For any pair of 1-cells ' : K — L and GG : L — M, the natural isomorphism
orc  PLu(G)PkL(F) = Pk.L(GF)

is defined as follows: ¢pa(c,a) : GiFi(c,a) — (GF).(c,a) is the map sending
the equivalence class [¢g : ¢ — Gb, f : b — Fa] to Gf - g : ¢ — GFa. This
is a bijection since any h : ¢ — GFa factors as Gf - g for some g : ¢ — Gb
and f : b — Fa. Moreover, if h factors as G f; - g1 for some ¢; : ¢ — Gb; and
fi: by — Fa, then [g1, f1] = [g, f], since the factorization is essentially unique. It
is clear that the collection (¢rg(c, a)) constitutes a natural transformation.

2. For any O-cell K in, define the natural isomorphism

pointwise as the identity morphism: Yk (a,a’) : Kg,(a,a’) — K(a,a') (we regard
the embedding of Kﬁn in K as an actual inclusion).

3. The coherence conditions for ¢’s and 1/’s. Recall that FLAT is a biquasicategory
and that in 4.4.5 we have defined

the associativity isomorphisms (cf. (4.26)) appo: 0 (¥ - @) — (9 -9) - o,
the identity isomorphisms (cf. (4.27)) p, : ¢34 —> @ and A, 1 ig - @ — .

Associativity coherence: for any 1-cells F: K — L, G:L — M, H: M — N in
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GDOM we are to prove that the diagram (cf. (3.15))

H.(G.F,) —2Z%"¢ _ [4.(GF),
S l

(H.G.)F, parn (4.28)
PG, Ho Fx l

(HG).F. — 5 (HGF),

commutes. This is straightforward: let [h, [g, f]] be any element in (H.(G.F))(d, a).
By definitions, the following square:

(h g, 25 [, G f - g
(aFy G, Hi)doa
(A, 9], f] (parm)aa (4.29)
(PG, H F*)d,aI
[Hg-h, f)————>HGf - Hg-h

(¢r,HG)d,a
commutes.

Identity coherences: we are to prove that the following diagrams

Fy Fy
Py, % Rk, Tl PR ().
PFy Pig,F ARy PF1L
F, n (F - 1x)« F, n (1L - F).
(4.30)

commute for any 1-cell F : K — L in GDOM. We will prove the right identity
coherence, the left one is verified similarly. Pick up any element [g, f] in F}-ix_(b, a).
Then the square

(Fe¥K)b,a

(pF*)b,aI I(Wlﬁ,lr)b,a (4.31)
Ff.-g=—————Ff-g

commutes by definitions.

It remains to prove that the triple (®, ¢, ) is a biequivalence.

Clearly if we take any O-cell A in FLAT then it is equivalent to the category of the form

Ky, where K = A*. Thus, Condition (a) in the definition of biequivalence is satisfied.
To prove that Condition (b) is satisfied, we have to show that ®x p, is essentially onto

on objects and that it is full and faithful.
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Pick up any flat distributor ¢ : Kz, —— Lg,. The process of 4.4.7 gives rise to a
finitary functor Fy, : (Kg,)* — (Lg,)*. Then ¢ and (F,), are isomorphic. In fact, by
definition, (F,).(b,a) = (Lg,)*(b, Fya). Define the map

Tba - (Lﬁn)*(baFgoa) — @(baa)
f:b—F,a — f(1p)

(we have made use of the fact that b is identified with a hom-functor (Lg,)*(-,b), Fya =
©(-,a) and that f is a natural transformation). Then 7,, is a bijection by the Yoneda
lemma and the collection 7 = (73,4) is a natural transformation.

To prove that ®k 1, is full and faithful, it suffices to show that any 2-cell 7 : F, — G,
is of the form o, for a unique natural transformation o : F* — G. For any Kg,-object
a, the morphism 7(_,a) forms a natural transformation, which by the Yoneda lemma
corresponds bijectively to a morphism o, : F'a — Ga. It is easy to see that the collection
o = (0,) is a natural transformation and that o, = 7. O

Corollary 4.4.9 The biequivalence ¥ of Theorem 4.4.8 can be restricted to a biequiva-
lence of SC and FLAT poc — the bicategory of all small FCC categories, all flat distributors
and all morphisms between them.

Remark 4.4.10 The proofs in this section do not use any special use of the cardinal N,.
In fact, they can be used verbatim with R, replaced by any regular cardinal A\. Thus, if
we define:

A distributor ¢ : A ——> B between small categories having initial object is A-flat
if the functor ¢(_,a) is A-flat for any A-object a.

A-FLAT is a biquasicategory of all A-flat distributors.

A-ACC, is the 2-quasicategory of all A-accessible categories having initial object, all
A-accessible functors and all natural transformations.

we obtain the following corollary. a
Corollary 4.4.11 Let X be a regular cardinal. Then \-ACC | is biequivalent to \-FLAT.

Remark 4.4.12 Let us make a few remarks on generalizations of DCPOs.

A straightforward categorical generalization of a DCPO is the notion of a category
having small filtered colimits. It is easy to see that one can form a 2-quasicategory FILT
with all categories having filtered colimits as 0-cells, all finitary functors as 1-cells and all
natural transformations as 2-cells.

Analogously we can define FILT' as the 2-quasicategory of all categories having small
filtered colimits as O-cells, all left adjoint functors with finitary right adjoints as 1-cells
and all natural transformations as 2-cells.

A category having filtered colimits is a concept resembling the notion of an w-category
of Lehmann ([Leh76]). What is the relationship of these concepts?
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Since any w-chain is directed, any category with filtered colimits is an w-category.
The converse is not true: a category has filtered colimits iff it has colimits of chains of an
arbitrary length ([AR94], Corollary 1.7).

Also, a generalization of a pointed DCPO is straightforward: a category which has
filtered colimits and has an initial object is called an inductive category. (The name
“inductive category” has been proposed by Paul Taylor in [Tay87].)

There is a lot of examples of inductive categories:

1. Any pointed DCPO is an inductive category.

2. Any generalized domain is inductive.

3. Any SC category is inductive.

4. Any locally finitely presentable category is inductive.

5. Any cocomplete category is inductive.

It is clear that one can define 2-quasicategories:

1. IND of all inductive categories, all finitary functors and all natural transformations,

2. IND' of all inductive categories, all left adjoints with finitary right adjoints and all
natural transformations,

in a similar way as has already been done for e.g. generalized domains. It should be
emphasised, though, that there is no analogy to Theorems 4.3.12 and 4.4.8 here. O

4.5 Permanence Properties of Generalized Domains

In Domain Theory one is often interested in the following question: under which con-
structions for posets is the given category D of domains closed? We call these results
permanence properties.

In our setting domains are categories, thus it is natural to ask under which categorical
constructions in the 2-quasicategory CAT a given 2-quasicategory of domains is closed.
We are interested especially in limit constructions, since domains can behave rather badly
w.r.t. colimits in CAT as the following example shows:

Example 4.5.1 A coproduct of two non-empty generalized domains is not a generalized
domain. O

Another reason why we are interested in limit constructions is the fact that construc-
tions using finitary closures and finitary kernels are also instances of a (rather general)
notion of a limit. We first give classical definitions (cf. [CCL80], Chapter 0, Definition
3.8).
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Definition 4.5.2 Suppose (X,C) is a poset and f : X — X is a monotone map with
f=r-r

The mapping f is called a finitary closure if it preserves directed sups and 1x C f
(pointwise).

The mapping f is called a finitary kernel if it preserves directed sups and f C 1x
(pointwise).

Given a domain (X,C) and a finitary closure f on (X, C) one can ask whether the
image of f a domain again. Before we give a partial answer, we present a categorical
generalization of finitary projections and finitary closures.

Definition 4.5.3 A monad T = (7,7, u) is called a finitary if T is a finitary functor. A
comonad G = (G, ¢,0) is called a finitary if G is a finitary functor.

The obvious generalizations of closures and projections are:

finitary closure — finitary monad
finitary kernel — finitary comonad

It is clear that the study of e.g. the image of a finitary closure on a poset generalizes
to the study of the category of Eilenberg-Moore algebras of a finitary monad.

Since the categories of Eilenberg-Moore (co)algebras are a special instance of a very
general limit construction, we are going to study the existence of certain limits (namely,
indexed (bi)limits — recall 3.3.24) of generalized domains.

Recall the 2-category Sketch of all small sketches, all sketch morphisms and all natural
transformations (Definition 3.5.11). Denote by U : Sketch — Cat the obvious forgetful
2-functor.

Throughout this section, S is going to be any full sub-2-category of Sketch. The
restriction of U to S is denoted by Ugs.

The following definitions are inspired by the concept of a topological category —
see [AHS90], Chapter VI. In fact, much of the theory of topological categories over Set can
be generalized to “topological” 2-categories over Cat. We do not need the full strength of
such a theory but it might be worthwhile to study topological categories in the enriched
context. Compare the following definition with Definition 10.41 of [AHS90].

Definition 4.5.4 Suppose D is a small 2-category, I' : D — Sketch, W : D — Cat are
2-functors.

1. Any (W, S)-cylinder
v: W = Cat(Us-T'(_),S)

over Ug - T' is called a Ug-structured (W, S)-cylinder over T'.

2. A (W,S)-cylinder
T: W= 8('(.),S)

over I is called an Ug-lift of y, if Us(S) = S and Us(7) = 7.

3. A (W,S)-cylinder
T: W= 8(I'(_),S)
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over I' is called an Us-final lift of y, if 7 is a Us-lift of v and the following holds:

a functor F' : Us(S) — Us(S') is of the form Us(F') for a (neccessarily unique)
functor F' : S — §', whenever F -y = Ug for some 0 : W = S(I'(_), S).

Lemma 4.5.5 Sketch has unique U-final lifts of U-structured (W,S)-cylinders over T'.

Proof. (essentially [MP89], Proposition 5.1.4) Suppose v : W = Cat(U - T'(.),S) is a
U-structured (W, S)-cylinder over I'. Define the sketch S = (S, P,, Q,) as follows:

e cones in P, are images of distinguished cones in the sketch I'(D) under functors
vp(X) : UT(D) — S for all 0-cells D in D and all W(D)-objects X,

e the set of of cocones in (), is defined similarly.

We have clearly defined a U-final lift 7 of ~. O

Definition 4.5.6 A full sub-2-category S of Sketch is called finally closed, if U-final lifts
of U-structured (W, S)-cylinders over I' have vertices in S for all small categories S and
all 2-functors ' : D — S, W : D — Cat.

Lemma 4.5.7 If S is finally closed in Sketch, then S has all small indezed colimits and
Us preserves them.

Proof. See [MP89], Proposition 5.1.4. O

Let A be a regular cardinal. Following [Ag88] we call S a A-variety of sketches, if all
distinguished cones of each sketch in S are of cardinality < A\. Denote by MOD(S) the
full sub-2-quasicategory of \-ACC, whose objects are all categories of models of a sketch
in S.

Lemma 4.5.8 Suppose that S is a A-variety of sketches finally closed in Sketch. Then
MOD(S) is closed in CAT under small indezed bilimits.

Example 4.5.9 It is straightforward that the following A-varieties of sketches are finally
closed in Sketch:

1. &;: sketches with no specified cocones. Then MOD(S;) is precisely the 2-quasicate-
gory of all locally A-presentable categories, all A-accessible functors and all natural
transformations.

2. S, sketches with discrete specified cocones. Then MOD(S,) is precisely the 2-
quasicategory of all locally A-multipresentable categories (see [AR94|, Definition
4.28), all A-accessible functors and all natural transformations.

3. S3: sketches with specified finite cones and empty cocones. Then MOD(S;) is
precisely the 2-quasicategory SC of all Scott complete categories, all finitary functors
and all natural transformations.
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Thus we obtain the following corollaries:

Corollary 4.5.10 Fach of the following 2-quasicategories is closed under indexed bilimits
in CAT:

1. The 2-quasicategory of all locally A\-presentable categories, all A-accessible functors
and all natural transformations.

2. The 2-quasicategory of all locally \-multipresentable categories, all A-accessible func-
tors and all natural transformations.

3. The 2-quasicategory SC of all Scott complete categories, all finitary functors and all
natural transformations.

Corollary 4.5.11 Let K be a category, T a monad on K, G a comonad on K. Then the
following hold:

1. If K is locally A-presentable and T and G are A-accessible, then both K" and Kg are
locally A-presentable categories.

2. If K is locally A-multipresentable and T and G are A-accessible, then both KT and
K¢ are locally \-multipresentable categories.

3. If K is Scott complete, T and G are finitary and then both K" and Kg are Scott
complete categories.



Chapter 5

Cocompletions of Categories

In Chapter 6 we are going to present a categorical generalization of another type of a
domain — namely that of a continuous domain. To define the concept of a continuous
category one has to extend the notion of a free cocompletion of a category w.r.t. small
filtered colimits. Recall that so far we have worked with a free cocompletion A* with
respect to small filtered colimits of a small category A. Categories equivalent to A* for
a small A are precisely the finitely accessible categories. In Section 5.1 we are going to
generalize the notion of a free cocompletion in two directions:

1. We allow arbitrary categories, not just small categories, to be cocompleted.
2. We want certain colimits to be preserved by the cocompletion.

We show that every category can be cocompleted such that a prescribed class of colimits
is preserved by the cocompletion — Theorem 5.1.12. We also show in Section 5.2 that
cocompletions can be described in a way which resembles cocompletions of posets by
means of ideals. Finally, in Section 5.4, we recall from Expose I of [SGA4] the description
of a free cocompletion of a category w.r.t. small filtered colimits which we will use in
Chapter 6.

5.1 Free F-Conservative C-Cocompletions

A free cocompletion of a category X w.r.t. a given class of colimits solves the problem
of cocompleting that category; but existing colimits of a given type in X are “destroyed”
in the free cocompletion. Our goal is to give a cocompletion which retains some class of
existing colimits in the category X.

Notation 5.1.1 Let F and C be classes of small categories. For every category X we

denote by
Ix : X — C-Cocompl(X) #

a free F-conservative C-cocompletion of X, i.e., a C-cocomplete category C-Cocompl(X)
and a full and faithful functor Ix preserving F-colimits with the following universal prop-
erty:

64
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for every functor H : X — Y to a C-cocomplete category Y and such that H
preserves F-colimits, there is a unique (up to a natural isomorphism) functor
H* : C-Cocompl(X)r —> Y which preserves C-colimits and satisfies H* - Ix =
H.

In case when F = () we write C-Cocompl(X) instead of C-Cocomp(X), and call this
category a free C-cocompletion of X.

In case when C consists of all small categories we write Cocompl(X)r instead of
C-Cocompl(X)# and call this category a free F-conservative cocompletion of X. a

Note that if a free conservative cocompletion exists, it is determined uniquely up to
an equivalence of categories.

Example 5.1.2 An example of a cocompletion of small categories which retains a class
of existing colimits is the concept of a locally A-presentable category, where A is a regular
cardinal — see Remark 3.5.6 for a definition of a locally presentable category. Locally
A-presentable categories are precisely free F-conservative cocompletions of small cate-
gories, where F consists of all categories which have less than A-morphisms ([AR94],
Theorem 1.46). See also item 3. of 5.1.14. O

The main result of this section (Theorem 5.1.12) is as follows:

Given a pair C, F of classes of small categories, a free F-conservative C-
cocompletion exists for any category X.

Essential ideas for the proof of this result are taken from [Er86], where cocompletions
of posets by different kinds of ideals are studied. An ideal in a poset (X, C) is a downward
closed subset I C X, i.e. whenever € I and y C x, then y € I. ! The set of all ideals of
(X, C) ordered by inclusion forms a complete lattice L. Cocompletions of (X, C) under
certain types of colimits then appear as subposets of L (cf. [Er86]). It is easy to see
that ideals of (X, C) correspond bijectively to monotone maps from (X, C)? to the two-
element chain. Thus, in the poset case, one can work with the complete lattice of certain
monotone maps instead of the complete lattice of all ideals. This is the approach that we
take for categories. That is, we start with a complete and cocomplete quasicategory of
all Set-valued contravariant functors on X and we find the desired cocompletion as a full
legitimate subcategory. Later in this chapter we indicate how to generalize the notion of
an ideal to categories (see Definition 5.2.1) and in Theorem 5.2.12 we give a description
of a free F-conservative C-cocompletion of a category using this generalized notion of an
ideal.

For any category X, let [X?, Set] denote the quasicategory of all functors F' : X —
Set and all natural transformations between them. [X?, Set] is a legitimate category
iff X is (equivalent to) a small category (see [FS95]). In that case, [X°?,Set] is a free
cocompletion of X w.r.t. small colimits. However, given any category X, the quasicategory
[X? Set] has small limits and small colimits, both computed pointwise.

The following notions are standard (see e.g. [AHS90], Section 13):

!The word “ideal” is overloaded. The notion of an ideal we use in the current chapter is different from
the notion of an ideal we gave in 2.1.9.
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Definition 5.1.3 Suppose a class W of small categories is given.

1. A category X is said to be W-cocomplete if it has W-colimits, i.e. if for any D € W
and any diagram D : D — X a colimit of D exists in X.

2. A functor H : X — Y is said to preserve W-colimits (or W-cocontinuous) provided
that the following holds for any D € W: whenever D : D — X is a diagram and
v: D =z is a colimit of D in X, then H(y): H- D = Hz is a colimit of H - D
inY.

Given W, we denote by W the class of all small categories D with D € W.

Remark 5.1.4 Definitions of dual notions, W-complete category, W-continuous functor

are straightforward.
We will make use of the following notion: given W, we say that a functor F': X — Y
preserves WP -limits if it preserves limits of all diagrams D : D — X for all D € W.
O

Denote by Class the quasicategory of all classes and all mappings. For a category
X we denote by [X?, Class] the quasicategory of all functors from X to Class and all
natural transformations.

Notation 5.1.5 For a class W of small categories and any category X we denote by

[X?, Set|yy the full subquasicategory of [X, Set| having as objects all functors F' :
X% — Set which preserve W-limits,

(X Class]yy the full subquasicategory of [ X Class] having as objects all functors
F : X’ —» (Class which preserve W-limits.

In case W is the empty set, we write [X°, Set| and [X°, Class| instead of [X?, Set|y and
[X? Class]p in accordance with our previous notation. O

The following result is due to Freyd, Kelly and Kennison:

Lemma 5.1.6 Let X be a small category. Let W be any class of small categories. Then
(X Set|y is a full reflective subcategory of [XP, Set].

Proof. See [GUT71], Korollar 8.14. O

We will see later that in the construction of a conservative cocompletion of a small cat-
egory X, all that is needed is the fact that [X°, Set]yy is a cocomplete category. This is not
straightforward in case of an arbitrary category X. Observe, however, that Lemma 5.1.6
can be “lifted” to a higher universe in the following sense.

Lemma 5.1.7 Let X be any category. Let W be any class of small categories. Then
(X Class)y is a full reflective subquasicategory of [X°?, Class| and therefore it has all
(large) limits and colimits.
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Proof. The proof of the lemma (for a more general choice of W) can be found in [Ke82],
Section 3.11. a

Definition 5.1.8 Let WV be any class of small categories. Let X be any category consid-
ered as a full subcategory of [X?, Class|yy. We denote by [X?, Set]y the closure of X in
[X? Class])y under small colimits and we denote by

YX : X — [[XOP;M]]W

the codomain restriction of the Yoneda embedding of X to [X?, Class]yy. Objects of
[X? Set]yy are called W-reachable functors. In case W = 0, we write [X?, Set] instead
of [X, Set]y and call such functors reachable.

Remark 5.1.9 Let us make a few comments on the previous definition.

1. Representable functors preserve all limits, therefore we can by the Yoneda lemma
identify X with its image Y (X) under the Yoneda embedding functor ¥ : X —
[X?) Set] and regard thus X as a full subcategory of [X?, Class]yy.

By definition, [X, Set])y has all small colimits, since [X°, Class]yy is cocomplete
by Lemma 5.1.7. It is also clear that the inclusion of [X?, Set]yy in [X?, Class]y
preserves all small colimits.

2. The closure of X in [X?, Class|yy under small colimits is defined as the smallest full
isomorphism-closed subquasicategory of [X?, Class])y which contains X and which
is closed under small colimits in [X, Class]|y.

It follows that closure of X in [X°, Class]yy under small colimits exists and is
uniquely determined:

Consider all full isomorphism-closed subquasicategories K of [X°, Class|)y which
contain X and which are closed under small colimits in [X°, Class])y. The conglom-
erate of all such K’s is nonempty and the desired closure is the intersection of this
conglomerate.

3. We use the fact that one can construct a full subcategory X, of [X?, Set],y which
is equivalent to [X?, Set]yy explicitly as a colimit of the following transfinite chain of
full embeddings E, s : X, — X5 (where § > a are ordinal numbers) — see [Ke82],
Section 3.5:

Define X, to be the full subquasicategory of [X?, Classl), determined by all hom-
functors X(_,z). Note that due to the Yoneda lemma X, is indeed a legitimate
category.

Suppose that o > 0 is an ordinal number and that for all 3 < « the quasicategories
Xg have been defined. For a successor ordinal o = 7y + 1, the quasicategory X, is
going to be a full subquasicategory of [X?, Class]yy determined by all X,-objects
and chosen colimits Fp for all functors D : D — [X, Class]yy with D a small
category, which factor through X,. The functors Eg, : X3 — X, for 3 < a are
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the obvious embeddings. For a limit ordinal «, put X, to be the union of all Xj3’s
for § < a. Full embeddings E, g : X, — X are defined in the obvious way.

Define the quasicategory X,,, as a union of all X’s. Using transfinite induction it is
easy to see that X, is a legitimate category and that it is equivalent to [X?, Set]y.

The above transfinite construction also justifies our notation [X, Set],y for the cat-
egory of all W-reachable functors; each W-reachable functor is a Set-valued functor.

4. The category X, described above has the advantage that we have canonically chosen
small colimits in X,,,. This choice will be of great importance later.

The final remark is terminological: what we call reachable functors here is called accessible
functors in [Ke82]. Since accessible functors have been defined as functors preserving
filtered colimits (Definition 3.5.7), we prefer a different name — reachable. O

Before we establish the existence of a free F-conservative C-cocompletion for any
category, let us introduce a useful notion of an adjoint pair along a functor.

Definition 5.1.10 Suppose J : A — B, FF: A — X, G : X — B are functors. We
say that F' is a left adjoint of G along J and we denote this fact by F' -; G, provided
there is a bijection of hom-sets

B(Ja,Gz) = X(Fa,r)
which is natural in z and a.

It is clear, that a left adjoint along a functor is determined uniquely up to a natural
isomorphism. The following lemma is proved analogously to the case of an ordinary
adjuction (i.e. to the case when A = B and J is the identity functor):

Lemma 5.1.11 Suppose that J : A — B and G : X — B are functors. Then the
following hold:

1. If F : A — X is a functor such that F 4; G, then F preserves any colimit which
1s preserved by J.

2. If for each a in A the functor B(Ja,G_) : X —> Set is representable by an X-
object Fya, then Fy is an object function of a unique functor F': A — X such that
FH;@G.

We are now ready to prove our main result. Recall the notation for free F-conservative
C-cocompletions (Notation 5.1.1) and recall that F° denotes the class of all D with
DeF.

Theorem 5.1.12 Let C and F be any classes of small categories and let X be any cate-
gory. Then the following hold:

L A free F-conservative cocompletion Cocompl(X)r of X exists and it is equivalent to
the category [X, Set]zo» of all FP-reachable functors.
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II. A free F-conservative C-cocompletion C-Cocompl(X)+ of X exists and it is equivalent
to the closure under C-colimits of X in the category [X, Set] o» of all FP-reachable
functors.

Moreover, the full and faithful functor from X to C-Cocompl(X)z which satisfies the uni-
versal property can be taken as a codomain restriction of the Yoneda embedding.

Proof. 1. Given X, let us fix a category X op, constructed as in 5.1.9, which is a full
subcategory of [X?, Set]ro» and which is equivalent to [X°, Set]zor. It therefore suffices
to show that Xr., is a free F-conservative cocompletion of X. Recall that X o, has
canonically chosen small colimits (see Remark 5.1.9).

It is well-known that the Yoneda embedding of X to [X, Class| zo» preserves F-colimits
(see [Sch70], Satz 10.3.5). Therefore its codomain restriction Yx : X — Xz, preserves
F-colimits.

To prove the universal property of Yx, it suffices to show that for any cocomplete
category Y and any F-cocontinuous functor H : X — Y there exists a unique (up to
a natural isomorphism) functor H* : Xz, —> Y which preserves all small colimits and
fulfills H™ - Yx = H.

It is clear that there is at most one functor H* which meets the stated requirements.
Therefore it suffices to prove the existence of such H™.

Let us first define a functor H, : Y — [X, Set]ror as follows:

H.(y) =Y(H-,y) for any Y-object y. This definition is correct, since H is assumed
to preserve F-colimits. H(y), though it is certainly a Set-valued functor, need not
be an F°-reachable functor in general.

H, is defined on Y-morphisms in an obvious way: for a Y-morphism f : y — ¢/
the natural transformation H, (f) is Y(H_, f): Y(H-,y) = Y(H_,y).

Let us denote by J : Xzop — [X?,Set]ror the inclusion. Note that the class
(X Set]ror (J(F), F') is a set for any F and F".

The desired functor H' : X, — Y is going to be a left adjoint of H, along J.
Since J preserves colimits by the definition of X o, the functor Ht will preserve colimits
by Lemma 5.1.11.

Recall from 5.1.9 that X o, is constructed as a colimit of a transfinite chain of full
embeddings E, s : X, — Xj3. Denote the colimit cocone by E, : X, — X zop.

To define H™ it therefore suffices to define a family of functors

Ha:XaHX

such that H, —;.5, H, for each a.
We proceed by transfinite induction on a.

e Let @ =0. Let F be an arbitrary object of X,. Then F = X(_, ) for some z. Put
Hy(F)=Y(_,Hx). By the Yoneda lemma we have for each y a bijection of sets

(X, Set]zor (X(-, 2), Hi(y)) = [X%,Set](X(-, ), Hi(y)) = (Hi(y))(2)
= Y(Hz,y) (5.1)
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natural in y by the Yoneda lemma.

Define Bp,, : [X%, Set](J - Eo(X(-,z)), H+(y)) — Y(Ho(F),y) to be the bijection
from (5.1). By Lemma 5.1.11 there is a unique functor Hy : X; — Y such that
H() _|J.E0 H_|_.

Suppose that o = [ + 1 and suppose that a functor Hs : X3 — Y such that
Hp 4.5, Hy has been defined.

We therefore have bijections
Bpry « [X7,Set](J - Eg(F'), Hi(y')) — Y.(Hs(F"),y)

natural in " and F" for all functors F” from X and all Y-objects y'.

Let F' be an object of X, which is not in X5. By assumption, F is a chosen colimit
Fp for a small diagram D : D — Xﬂ. Let x4 : Dd = F denote the colimit cocone
of D. Let H,(F') be a colimit of Hg- D in Y and let vy, : Hg(Dd) = H,(F’) denote
a colimit cocone of Hg - D.

Then
Y (74, y) : Y(Ho(F),y) — Y(Hg(Dd),y)

is a limit cone in Set. Since by the construction of X r.p, the functor J : Xz0p —>
[X? Set]ro» preserves all small colimits, the cone of all morphisms

(X, Set]zor (J (Ka), H (y))

from [X, Set]ror (J(F), Hi(y)) to [X?, Set]rer (J(Dd), Hy(y)) is a limit cone in Set
as well.

Note that since y was arbitrary, we have that Y(H,(F'),_) is a limit of a diagram
of functors Y (Hg(Dd), ) in [Y, Set] with natural transformations Y (74, -) as a limit
cone.

Analogously [X?, Set]ror (J(F),_) is a limit of [X%, Set|ror(J(Dd), H.(_)) with a
limit cone formed by natural transformations [X?, Set]ros (J(kq), Hy(-))-
Since by assumption, each Bpg _ is a natural transformation, define the natural

transformation

Br,_: Y(Ho(F), ) = [X*, Set]zor (J (F), Hy.(-))

as a unique natural transformation such that the equality
(X, Set]zer (J (ka), H(-)) - Br, = Bpa,_ - Y74, -)

holds for all d.

It is clear that Br_ is a natural isomorphism. Thus by Lemma 5.1.11 there is a
unique functor H, : X, — Y such that H, extends Hg and H, -;.5, H; holds.

e The case of a limit ordinal « is trivial: define H, to be the union of Hp’s for all

8 < a.
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The functor H* is defined as a unique functor extending all H,’s. It now follows
that H* 4; H, and therefore H* preserves small colimits. It is clear that H™ is defined
uniquely up to an isomorphism and that the equation H* - Yx = H holds. This finishes
the proof of the first part of the theorem.

IT. Analogously to the first part of the proof choose a category Xz which is a full
subcategory of Xr., and which is equivalent to the closure of X in [X?, Set]ro» under
C-colimits. By definition, Xz, has all C-colimits and the codomain restriction of ¥x :
X — Xzop tO Xf,c preserves F-colimits (see the first part of this proof). Let us denote
this codomain restriction by Zx.

To establish the universal property of Zx, it suffices to show that for any C-cocomplete
category Y and any F-cocontinuous functor H : X — Y there exists a unique (up to
a natural isomorphism) functor H* : Xz, — Y which is C-cocontinuous and fulfills
H*-Zx =H.

Observe that the domain restriction to Xz . of the functor H* constructed in the first
part of this proof is C-cocontinuous. Put H* : Xz, — Y to be this domain restriction
of H*. The proof of the second assertion of the theorem is finished.

The last assertion of the theorem follows from the above proof. O

Remark 5.1.13 Theorem 5.1.12 allows us to speak about “the” free F-conservative C-
cocompletion C-Cocompl(X) s for each category X. More precisely, we have a canonical
choice of a free F-conservative C-cocompletion for each category X, namely the closure of
X under C-colimits in [X, Set] zor. O

Examples 5.1.14 By a special choice of C and F we can recover familiar cocompletions:

1. Choose C to contain all small categories, F = (. Then a free C-cocompletion
C-Cocompl(X) of a category X is a free cocompletion of X w.r.t. all small colimits.

In case X is small this cocompletion is equivalent to the category of presheaves
(X, Set] (see [Lam66]).

The case of a free C-cocompletion for an arbitrary choice of C is fully described (in
the general enriched case) in [Ke82|, Theorem 5.35 as the closure of X in [X?, Set]
under C-colimits.

2. Choose C to consist of all M-filtered small categories (A is a fixed regular cardinal),
let F = (). Then the free C-cocompletion of a category X is the free cocomple-
tion of X w.r.t. A-filtered colimits. For X small, C-Cocompl(X) is (equivalent to)
the A-accessible category Flaty(X) of M-flat functors from X% to Set (see Defini-
tion 3.5.10). Many basic properties of this cocompletion for a special choice A = X,
and a not neccessarily small category X have been proved in Exposé I of [SGA4],
see also [JJ82], where a different description of this cocompletion is called inductive,
see also Section 5.4.

3. Choose C to consist of all small categories, let F consist of all categories having
less than A morphisms (A is a fixed regular cardinal). Then the free F-conservative
C-cocompletion C-Cocompl(X) 7 of a small category X is equivalent to the locally A-
presentable category Conty(X) defined in Section 1.42 of [AR94]. By Theorem 1.46
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of [AR94], each locally A-presentable category is equivalent to a category of the
form Conty(X) for a small category X. As far as we know free F-conservative C-
cocompletions of arbitrary categories for this particular choice of F and C have not
been studied.

4. An interesting example is the case when C = F. In this case, a free C-conservative C-

cocompletion C-Cocompl(X)¢ of a category X is called an idempotent C-cocompletion
of X.

5.2 Discrete Op-Fibrations

In this section we give an equivalent description of a free conservative cocompletion of a
category (Theorem 5.2.12).

Recall Definition 3.5.8 of the category Elts(F') of elements of a functor F' : X? — Set
and the notation dp for the projection functor from Elts(F') to X?.

We need the following notion of an “abstract” category of elements of a functor F' :
X% — Class (cf. [Ke82|, Section 4.7 where discrete op-fibrations are defined for Set-
valued functors on a small category):

Definition 5.2.1 Suppose that A and X are categories. A functor 9 : A — X? is called
a discrete op-fibration (d.o.f. for short) if there exists a functor F' : X — Class and an
isomorphism 7" : A — Elts(F") such that 0 = 0p - T

A discrete op-fibration 0 : A — X is called Set-based if the functor F' : X’ — Class
factors through the inclusion of Set in Class.

Given two d.o.f’s 0y : A} — X and 0, : A, — X then a morphism from 0; to
0s is a functor G : A; — A, such that 0; = 0, - G. The quasicategory of d.o.f.’s and all
morphisms between them is denoted by dof (X).

Remark 5.2.2 Discrete op-fibrations play the role of generalized ideals of a poset in the
process of cocompleting a category — see [Er86] for a description of various cocompletions
of posets by means of ideals. O

Lemma 5.2.3 Let 0 : A — X be a functor. Then the following are equivalent:
1. The functor 0 is a d.o.f.
2. Every morphism f : 0(a) — x in X? is of the form 0(g) for a unique A-morphism

g with domain a.

Proof. 1.=2.: This is trivial.
2.=1.: Define the functor I : X — Class as follows: Fx = {a | d(a) = z} for each
X?-object x, for a X’-morphism f : x — ' define F'f as the mapping from Fz to Fz'
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which sends a € Fx to a’ € Fa', where a' is the codomain of a unique g with d(g) = f.
O

Remark 5.2.4 The above lemma can be modified for Set-based d.o.f.’s in the following
manner: a functor 0 : A — X% is a Set-based d.o.f. iff it verifies Condition 2. of the
above lemma plus the requirement that the class {a | 9(a) = z} is a set for each X-object
x. O

Lemma 5.2.5 Let X be any category. Then the quasicategories [X°?, Class| and dof (X)
are equivalent.

Proof. One can use verbatim the proof of the corresponding result in Section 4.7
of [Ke82]. Since we refer to this equivalence later, we give a sketch of the proof here.
The desired equivalence functor ® : [X Class] — dof(X?) sends a functor F' :
X? — Class to its corresponding d.o.f. Or and it sends a natural transformation
7 : Fy = F, to the functor G : Elts(F;) — Elts(F3), where G is defined as follows:
G({(z,a)) =7, -z and G(f) = f for f: (x,a) — (y,b). It is easy to verify that ® is an
equivalence. O

The following fact will be very useful (cf. [Ke82], Section 4.7).

Lemma 5.2.6 Suppose that F : X — Class is a functor. Let 1 denote a one element
set. Then the following hold:

1. Each functor D : D — Elts(F) induces a functor D :D — X and a natural
transformation ¢ : consty = F - D, such that D = 8p - D

2. Each pair consisting of a functor D : D — X% and a natural tmnsformatzon
§ : consty => F - D induces a functor D : D — Elts(F) such that D = dp - D

The correspondence D +— (D, d) is bijective.

Proof. 1. Denote Dd = (z4,a4) and Du = f, : (x4,a5) — (zg,aq) for u:d — d' in
D. Define Dd—ad, Du= f,and 6, = z4:1 — Fay.

2. Denote Dd = ay4, Du = f, : ag — ag for ud — d’ in D. Denote 6, = z4: 1 —
Fay Put Dd = (x4,0aq) and Du=f,.

The last assertion of the lemma is obvious. a

Definition 5.2.7 Suppose a class W of small categories is given. A functor H : X — Y
is said to create W-limits provided that the following holds for any D € W: for any
diagram D : D — X and any limit v : y = H - D of H - D there is a unique cone
k:x = D such that Hz =y, H(k) = v and & is a limit of D.

Lemma 5.2.8 Let W be a class of small categories, let X be any category. A functor
F : X — Class preserves W-limits iff the corresponding d.o.f. Of : Elts(F') — X
creates them.
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Proof. 1. Suppose that F' preserves W-limits and let D : D — Elts(F') be a diagram
with D € W. Suppose that £ : ¢ = Op - D is a limit in X?. Put Dd = (z4,a4) and
Du = f, : {(x4,aq9) — (x@,aq) for u:d — d in D.

Recall from Lemma 5.2.6 that giving D is equivalent to giving D : D — X° and
§:1=> F - D such that D = 9z - D and 6; = z,.

By assumption, F(k) : Fa = F - O - D is a limit cone. Since § : 1 = F - Dis a
cone on F - D = F-9p - D, there exists a unique z : 1 — Fa such that F(k) -z = 6.
The last equation states that (x,a) is a vertex of a cone on D in Elts(F'). Denote this
cone by 7 : {x,a) = D. Tt is clear that Or(7) = k and that v is a unique cone with this
property.

To prove that 7 is a limit, consider another cone 7' : (z',a') = D.

Since Or(7y) is a limit, there is a unique X°”-morphism f : ' — a such that dr(v)-f =
Or(7'). We have to prove that Ff - 2’ = .

By assumption, (F - 9x)(y) = F(k) : Fa = F - D is a limit cone of F-9p-D = F- D
in Set. Therefore the equality

(F'-0p)(y)- Ff = (F-0p)(7') (5-2)

holds. Since 7' is a cone on D, we have the equality
(F-0p)(7)-2' =9 (5-3)

Therefore (F-0p)(y)-F f-2' = 0. Since z is a unique mapping such that (F-0p)(y)-z =
0, we proved that F'f -2’ = .

2. Conversely, suppose that Op creates W-limits. Let D : D — X be a diagram
with D € W and let ¥ : « = D be a limit of D.

To prove that F(k) : Fa = F - D is a limit, consider any cone v : Z = F - D. To
define a unique mediating mapping f : Z — Fla, take an element z € Z and identify
it with a mapping z : 1 — Z. Then 7-2z: 1 = F' - D is a cone and together with
D :D —s X it defines a functor D : D — Elts(F') such that OF - D=D.

Since 9y creates W-limits, there is a unique cone 7 : (z,a) = D such that 8y (1) = &
and 7 is a limit cone. Put f(z) = z. It is easy to see that F'(k) - f = v and we have
proved that F'(k) is a limit cone. O

Remark 5.2.9 It is clear that the above proof works for Set-valued functors as well.
Explicitly: a functor F' : X? —» Set preserves W-limits iff the corresponding Set-based
d.o.f. creates them. O

Notation 5.2.10 Let W be a class of small categories, let X be any category. Denote
by W-dof (X?) the full subquasicategory of dof(X’) determined by those d.o.f.’s which
create W-limits. O

The following lemma is easy to prove.

Lemma 5.2.11 Let W be any class of small categories, let X be any cateory. Then the
quasicategories [ X, Class|yy and W-dof (X) are equivalent.
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The correspondence of Class-valued functors and discrete op-fibrations from the above
lemma provides us with a description of conservative cocompletions which resembles the
approach used while cocompleting posets.

Given a class W of small categories, one can restrict the equivalence functor

E : [X?, Class]yy — W-dof (X)

to the category [X?, Set]yy of W-reachable functors. Call those d.o.f.’s, which lie in the
image of the restriction of E, W-reachable discrete op-fibrations.

Theorem 5.2.12 Let C and F be classes of small categories, let X be any category.
Define J : X — F°P-dof (XP) to be the codomain restriction of the full embedding of X
to dof (XP), which sends an X-object x to the discrete op-fibration d, : X?/r — X,
where dy is the canonical forgetful functor. Then C-Cocompl(X)s is equivalent to the
closure of J(X) in F°P-reachable discrete op-fibrations under C-colimits. The codomain
restriction of the functor J can be taken to be the full and faithful functor from X to
C-Cocompl(X) = which satisfies the universal property.

5.3 Functorial Behaviour of Cocompletions

In this section we prove that assignment of “the” free F-conservative C-cocompletion (in
the sense of Remark 5.1.13) is functorial.

For classes F and C of small categories we define the following 2-quasicategories as
follows:

1. CAT £ is the 2-quasicategory of all categories, all functors preserving F-colimits and
all natural transformations.

2. C-CAT¢ is the 2-quasicategory of all C-cocomplete categories, all functors preserving
C-colimits and all natural transformations.

Theorem 5.3.1 Let F and C be classes of small categories. Let ® : X — ®(X) be a
mapping which assigns to a category X the closure of X under C-colimits in [X, Set] ro».
Then ® is an object function of a pseudofunctor ® : CAT r — C-CATe.

Proof. For each category X denote by Ix : X — ®(X) the embedding of X to “the”
free F-conservative C-cocompletion.

We now extend the assignment X — ®(X) to a pseudofunctor.

Let X and Y be arbitrary categories. The functor

CDX:X : CAT]:(X, X) — C—CAT(;((I)(X), q)(l))
is defined as follows:

e From the proof of Theorem 5.1.12 it follows that for each F-cocontinuous functor
F : X — Y aleft Kan extension of Iy - F' along Ix exists (and preserves C-colimits).
Let us denote by ®x y(F) a choice of Lang, (Iy - F) and denote by n™ a unit of left
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Kan extension. We can make this choice of a left Kan extension in such a way that
®(1x) is equal to lgx) and 1'% is the identity natural transformation. This follows
from Theorem 5.1 of [Ke82]: the functor from ®(X) to [X%, Set], which assigns
(X, Set|(Ix-, F') to a ®(X)-object F, is naturally isomorphic to the inclusion and
therefore is full and faithful.

We have defined ®x y on objects.
e For a morphism 7 : F} = F, in CAT £(X,Y), put
Px,y (1) : Px,y (F1) = Px v (F2)

to be the unique natural transformation such that the square

Fy

Iy - Fy - x v (F1) - Ix
Iyt ®x,v(T)Ix
Iy - F e Oxy(F) - Ix

commutes (use the universal property of nf*). This defines ®x y on morphisms and
from the universal property of a unit of a left Kan extension it follows that ®x vy is
indeed a functor.

To show that ® bears a structure of a pseudofunctor we have to define the comparison
natural isomorphisms

Px 1 Px x(1x) = lax)
and
ore: Pxz(G-F) = Oy z(G) - 2xy(Y)

and verify the appropriate coherence conditions for them (see Definition 3.3.11):

e 1)x is the identity natural transformation.

e For F-cocontinuous functors F': X — Y, G : Y — Z, ¢ is defined as a unique
natural transformation such that the equality

(5.4)

holds. To prove that 1r ¢ is a natural isomorphism, recall from the proof of 5.1.12
that both ®x z(G - F) and @y z(G) - @x y(Y') are defined on objects in an iterative
way using C-colimits starting from hom-functors. Since, by definition, ¢¥rqlx is a
natural isomorphism and both ®@x 7(G-F) and @y z(G)-®x y(Y') are C-cocontinuous,
it follows that ¢ is a natural isomorphism.
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The associativity coherence (recall (3.18))

S(H(GF)) S((HG)F)

(5.5)

for functors F': X — Y, G:Y — Z H : Z — W follows from the universal property
of nGF"; the left hand side of (5.5) precomposed with n¢F" equals to:

(5.6)

where the equalities follow by definition of . Analogously, the right hand side of (5.5)
precomposed with n7¢ equals to:

|
=
oy
T
8
|

(5.7)

Ix o(F) @(G) @(H) Ix ®(F) &(G) @(H) Ix o(F) &(G) o(H)

Therefore the equality (5.5) holds.

The identity coherence conditions (see (3.19)) for a functor F' : X — Y follow from
the universal property of ¥ and the fact that we have defined 1 as the identity natural
transformation. We verify one of these conditions, the second is verified analogously.
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Since the equation

holds, it follows from the universal property of ™ that (®(F)vx) - ¢1,,r is the identity
natural transformation on ®(F'). O

5.4 Free Cocompletions w.r.t. Filtered Colimits

We now treat the special case of a free F-conservative C-cocompletion when F = ) and
C consists of all small filtered categories.

An explicit description of a free cocompletion of a category w.r.t. small filtered colimits
has been given in Expose I of [SGA4] and [JJ82]. We recall it in the following definition:

Definition 5.4.1 Let X be a category. An inductive cocompletion of X — denoted by
Ind(X) — is the following category:

e Ind(X)-objects are functors D : D — X with D small and filtered,

e an Ind(X)-morphism from D to D’ is a family {f; | d is a D-object}, where each f,
is an equivalence class of X-morphisms from Dd to some D’'d’ under the following
equivalence:

g1 : Dd — Dd| and g5 : Dd — Dd}, are equivalent, if there exists a D'-object
d' and D'-morphisms d; : dj — d}, such that the square

Dd 2 D'd,
g2 D4y (5 9)

I ! !

D'd, o D'd

commutes.
Each class f,; is required to satisfy the following compatibility condition:

if 0 : d — d; is a D-morphism and if g : Dd; — D'd' represents f,,, then
g - D¢ represents fj.
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e Composition in Ind(X) is defined in the following way: suppose
f={fs|dis aD-object}: D — D'
and
g={ga | d is a D-object} : D' — D"
are Ind(X)-morphisms, then their composite g - f : D — D" is a family
{hq | d is a D-object}

where hy is an equivalence class represented by the X-morphism gz - f; with fy :
Dd — D'd' representing f; and gy : D'd’ — D"d" representing g, .

It is proved in Expose I, [SGA4|, Proposition 8.7.3 that Ind(X) together with an
obvious functor Ix : X — Ind(X) (which sends an X-object z to Ix(z) : 1 — X) is a
free cocompletion of X w.r.t. small filtered colimits.

We have already given an alternative description of a free cocompletion w.r.t. filtered
colimits in Theorem 5.1.12 but the description of Ind(X) despite of being technical has
the following advantage:

1. Objects of Ind(X) are canonical filtered colimits of X-objects.
2. The assignment X — Ind(X) is an object function of a 2-functor Ind(.) : CAT —

FILT (compare with Theorem 5.3.1). This is proved in Section 8.6 of Expose I,
[SGA4].

3. The 2-functor Ind(_) induces a structure of a KZ doctrine on CAT — see Defini-
tion 5.4.2 below. The machinery of KZ doctrines will be essential in Chapter 6.

In his paper [K093] Anders Kock distinguishes certain structures on CAT called KZ
doctrines, which are typical for free cocompletions of categories w.r.t. a class of small
colimits. The following definitions come from [Ko093].

Definition 5.4.2 A KZ doctrine on a 2-(quasi)category K is a 4-tuple D = (D, n, u, Z),
where D : K — K is a 2-functor, n : 1x = D and p : D - D = D are 2-natural
transformations and = : Dn ~» nD is a modification such that the following axioms are
satisfied:

KZ-1 7 is a two-sided identity for u:
w-nD=pu-Dn=1p (5.10)

KZ-2 The 2-cell

E (5.11)

is an identity 2-cell on Dy, - 9, = Nps - 75 (0 is 2-natural) for any O-cell z.
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KZ-3 The 2-cell

E3 (5.12)

is an identity 2-cell on py - D1y = g - Npe (equality is due to (5.10)) for any 0-cell
.

KZ-4 The 2-cell

Epa | (5.13)

is an identity 2-cell on g - Dyy - Dnpy = phe - Dpg - mp2, (equality is due to (5.10))
for any 0-cell z.

A KZ doctrine on K can be thought of as of a “lax idempotent” 2-monad on K.

Definition 5.4.3 An algebra for a KZ doctrine (D,n, u,Z) is a triple (z, h, ), where
h: Dz — x is a 1-cell (called a structure 1-cell of an algebra) left adjoint to n, : © — Dx
and o : 1, = h -1, is an isomorphism 2-cell, such that o ! : h - 5, = 1, is the counit
of h 4 n,.

Definition 5.4.4 Suppose (z,h,a) and (2, h', @) are algebras for a KZ doctrine D. Let
en:lps =>ny-hand ey : 1pyy = ny - h' denote units of A 47, and A’ - ny.

Let f: 2z —> 2’ be a 1-cell. A canonical 2-cell for f is a mate of the identity 2-cell
ny:Df-ny = ny - f (nis 2-natural). Explicitly, it is the 2-cell

(5.14)
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If the canonical 2-cell ¢ for f is an isomorphism, then f is called a homomorphism
from (z, h, ) to (z', ', ).

Remark 5.4.5 Structure 1-cells are essentially unique: suppose that A; = (z,hy, aq)
and Ay = (z, he, ) are algebras with the same underlying 0-cell . Then it is easy to
see that the canonical 2-cell for 1, : + — z is an isomorphism, therefore A; and A, are
isomorphic. O

For a KZ doctrine D on K one can define the 2-quasicategory D-Alg of algebras for D
if we take algebras for 0-cells, homomorphisms for 1-cells and all 2-cells from K for 2-cells.

Kock explains in [K093], page 8, that free cocompletions w.r.t. filtered colimits yield
a KZ doctrine IND = (D, n, 1, =) on CAT. Let us gather basic facts (proved in [Ko93])
how this KZ doctrine is formed:

1. The inclusion 2-functor £ : FILT — CAT is a right adjoint to Ind : CAT — FILT.
2. The 2-functor D : CAT — CAT is the composition F - Ind.
3. The 2-natural transformation 7 : 1cat = D is the unit of Ind - E.

4. The 2-natural transformation y : DD = D is the composition Eelnd, where
€ :Ind - F = 1f1 denotes the counit of Ind 4 E.

5. Pointwise, the counit ¢ is a functor from Ind F(X) to X which assigns a colimit to a
filtered diagram in X. Then px is a left adjoint to npx) with a natural isomorphism
as a counit (np(x) is a full and faithful functor). Then the mate calculus provides
us with a modification = : Dn ~» nD.

6. The quadruple (D, n, u,Z) defined in the above way is a KZ doctrine.
The next result is contained in the proof of Theorem 3.5 of [K093].

Lemma 5.4.6 Let D = (D,n,u, =) be a KZ doctrine on CAT. Let X be any category
and suppose that nx s a full and faithful. Moreover, suppose that idempotents split in the
quasicategory [D(X), X]. Then the following are equivalent:

1. There ezists a functor H : D(X) — X such that H - nx is naturally isomorphic to
1x.

2. The functor nx has a left adjoint L and the counit of this adjunction is an isomor-
phism.
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Proof. 1.=2.: Let e : H - nx = 1x denote a natural isomorphism. Define a natural
transformation n : 1pxy = nx - H by the equality

(5.15)

| = (5.16)

The second composition

is in general not identity but it is an idempotent natural transformation r : H — H,
i.e. an idempotent in [D(X), X]. Due to our assumption r splits, say as r = a - b for some
a:L—=Handb: H—=— L withb-a=1p.

Then due to Lemma 3.2.3 we have that L is a left adjoint to nx with the counit e-anx.
The last natural transformation is an isomorphism since 7x is full and faithful.

The implication 2.=1. is trivial. O

We now show that the 2-quasicategories FILT and IND-Alg are essentially the same.
First, Lemma 5.4.6 allows us to characterize categories which have filtered colimits.

Lemma 5.4.7 Let X is a category which has filtered colimits. Then there is a structure
of an IND-algebra on X. Conwversely, if (X, H,«) is an IND-algebra, then X has filtered
colimits.
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Proof. 1. By assumption, the functor quasicategory [D(X), X] has filtered colimits and
therefore idempotents split in [D(X),X]. Due to Lemma 5.4.6 X carries a IND-algebra
structure iff there is a functor H : D(X) — X such that H - 7x is naturally isomorphic
to ]‘X'

Since we assume that X has filtered colimits, let H be a functor which assigns a colimit
to each Ind(X)-object. Then clearly H - nx = 1x.

2. The second assertion is trivial, since then X is equivalent to a full reflective subcat-
egory of the category D(X) which has filtered colimits. O

The following result appears in a more general setting in Remark 2.3 of [K093].

Lemma 5.4.8 Suppose that X, X' have filtered colimits and let F : X — X' be a finitary
functor. Then F is a homomorphism of IND-algebras. Conversely, if F' is a homomor-
phism of IND-algebras, then F' is finitary.

Proof. Let (X, H,«) and (X', H', o') denote the structures of IND-algebras which exist
due to the previous lemma.

Let ¢ : H' - D(F) = F - H denote the canonical 2-cell for F. To say that ¢ is a
natural isomorphism is the same as to say that F' is finitary, since both H and H' are
functors which assign a chosen colimit to filtered diagrams in X, resp Y. |

Theorem 5.4.9 The 2-quasicategories FILT and IND-Alg are biequivalent.
Proof. Let us define a 2-functor ® : IND-Alg — FILT as follows:
Put (X, H, ) = X for any IND-algebra (X, H, ).
®(F) = F for each homomorphism of IND-algebras.
®(7) = 7 for any 2-cell 7 in IND-Alg.
Lemmas 5.4.7 and 5.4.8 assure that the above definition is correct. ® is clearly a biequiv-

alence. 0

Remark 5.4.10 Let us remark that the 2-functor ® from the previous proof is not an
isomorphism, since algebra structures are not determined uniquely but only up to an
isomorphism (cf. 5.4.5). O



Chapter 6

Continuous Categories

In this chapter we are going to present a categorical generalization of another type of
domains — namely continuous domains. The resulting concept of a continuous category
goes back to [JJ82].

Apart from collecting known results from [JJ82] about continuous categories, the im-
port of the current chapter lies in the fact that one can exploit the machinery of KZ
doctrines from Section 5.4 and one can view continuous categories as certain coalgebras.
These coalgebras have naturally defined morphisms among themselves — this allows us to
define way-below preserving functors without mentioning the way-below relation explicitly,
see Definition 6.2.3.

6.1 A Generalization of Continuous Domains

The notion of a continuous domain is another important concept of domain theory —
see [AbJ96]. In this section we give the basic definition and properties of continuous cat-
egories which provide a categorical generalization of continuous domains. The definitions
and results of this section come mostly from the paper of Peter Johnstone and André
Joyal [JJ82]. They work with an explicit description of a free cocompletion of a category
w.r.t. filtered colimits, namely with the category Ind(X) (see Definition 5.4.1).

We first give a definition of a continuous domain (see [AbJ96], Chapter 2).

Definition 6.1.1 Let (X,C) be a DCPO.

We say that z € X is way-below y € X (notation x < y), provided for any directed
set A C X it holds: if y C || A, then x C a for some a € A.

A set B C X is called a basis of (X, C) if for each element = € X the set

B, ={y€eB|y<uz}

contains a directed subset with supremum z.
A DCPO (X,C) is called a continuous domain (or a continuous poset), if it has a
basis.

Lemma 6.1.2 Let (X,C) be a DCPO. If x < y, then x C y.

84
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Proof. Suppose z < y. Use the fact that y = [|[{z € X | z C y} and the definition of
the way-below relation. a

Remark 6.1.3 The converse of the preceding lemma does not hold: for an element z of
a DCPO (X, C) we have that < z holds iff x is compact.

Therefore the concept of a continuous domain generalizes the concept of an (unpointed)
algebraic DCPO (cf. Definition 2.1.3): each algebraic DCPO has a basis formed by the
set of all its compact elements. O

Example 6.1.4 A classical example of a continuous poset which is not an algebraic
DCPO is the unit interval [0, 1] together with the usual order. Since [0, 1] is a complete
lattice, it is a DCPO. The following is easy to verify: z < y iff either x =y =0o0r z < y.
Thus 0 is the only compact element of [0, 1] and hence [0, 1] is not algebraic. O

Recall the notion of an ideal completion (X,C)* of a poset X = (X, C) from 2.1.10,
which is the free cocompletion of (X, C) w.r.t. directed suprema. Thus, viewed as cat-
egories, (X,C)* and Ind(X) are equivalent. Then each DCPO (X,C) can be equipped
with a continuous map sup x r : (X, E)* — (X, E) which assigns || to each ideal I.

The following characterization of continuous domains will be useful for us (cf. [JJ82],
Lemma 2.1):

Lemma 6.1.5 A DCPO (X,C) is a continuous domain iff the map supx,cy has a left
adjoint.

Let us gather important facts about inductive cocompletions:
Theorem 6.1.6 The following properties hold for any category X:
1. Ix(z) is finitely presentable in Ind(X) for any X-object x.

2. If idempotents split in X, then each finitely presentable object in Ind(X) is isomor-
phic to Ix(x) for some .

3. X has filtered colimits iff Ix has a left adjoint.

Proof. See [JJ82]. O

Recall that FILT denotes the 2-quasicategory of categories having all small filtered
colimits as 0-cells, finitary functors as 1-cells and natural transformations as 2-cells. Also
recall from Theorem 5.4.9 that IND-Alg and FILT are biequivalent. Therefore we do not
distinguish between algebras for IND and categories having filtered colimits.

Let us denote a choice of a left adjoint to Ix by supy : Ind(X) — X for any category
X with filtered colimits. Choosing a functor supy provides us with a choice of a colimit
for each filtered diagram in X. It is clear that the collection of all supy’s constitutes a
pseudonatural transformation sup : Ind = 1gr with the natural isomorphism

supy : F' - supy == supy - Ind(F)
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for each finitary functor F' : X — Y defined as follows: let sgp denote a mate of the
identity natural transformation from Ind(F) - Ix to Iy - F:

lnax) Tnd(F) supy

(6.1)

where 7x denotes the unit of supx - Ix and ey denotes the counit of supy 4 Iy. sr is an
isomorphism, since F' is finitary. Put

supp = (sr) "'
The following definition comes from [JJ82]:

Definition 6.1.7 Suppose X has filtered colimits. Then X is called continuous, it the
functor supx has a left adjoint. For a continuous category X, a choice of a left adjoint of
supx will be denoted by wx and called a way-below functor.

Example 6.1.8 There are many examples of continuous categories:
1. A poset is a continuous domain iff it is a continuous category ([JJ82], Lemma 2.1).

2. For any category X, Ind(X) is a continuous category (Proposition 2.4 of [JJ82]).
Thus, in particular, each generalized domain is a continuous category.

|

It is clear from the definition that wyx is determined uniquely up to a natural isomor-
phism. Indeed, a continuous category is better to be seen as a pair (X, wx) rather than X
alone. The pair (X, wx) is a kind of a coalgebra structure in the sense of [K093], Section 4.

Also, since the counit of supy - Ix is always an isomorphism (Ix is a full embedding),
the unit of wx - supy is always an isomorphism. Thus, each functor wy is essentially an
embedding of a full coreflective subcategory.

Denote by CONT the 2-quasicategory having all continuous categories as 0-cells, all
finitary functors as 1-cells and all natural transformations as 2-cells.

Definition 6.1.9 Let £:Y — X, R: X — Y be a pair of finitary functors such that
there is a natural isomorphism « : 1y => R - E. The triple (E, R, «) is called a finitary
retraction from Y to X (and the category Y is called a finitary retract of X).
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Lemma 6.1.10 Suppose W is a class of small categories. Let (E, R, ) be a finitary
retraction from Y to X. If the category X has W-colimits, then so does Y.

Proof. Suppose D : D — Y is a diagram with D in WW. By assumption, colim £ - D
exists in X. It is easy to verify that R(colim E - D) is a colimit of D in Y. O

The following theorem generalizes the result of Achim Jung ([Ju88b], Proposition
1.16).

Theorem 6.1.11 CONT is closed under finitary retracts, i.e.: suppose that (X, wx) is a
continuous category, Y is any category and let (E, R, ) be a finitary retraction from Y
to X. Then Y has a structure of a continuous category.

Proof. Since Y has filtered colimits by Lemma 6.1.10, to prove the first statement of the
lemma it suffices to prove that supy has a left adjoint. This is Proposition 2.7 of [JJ82].
O

Remark 6.1.12 In fact, it is proved in Theorem 2.8 of [JJ82] that a category is contin-
uous iff it is a finitary retract of a category having the form Ind(X) for some X. O

6.2 The Way-Below Relation

In this section we are going to introduce another type of a morphism between continuous
categories. The resulting concept of a way-below preserving functor is a generalization of
way-below preserving monotone maps between DCPOs introduced by Jirgen Koslowski
in [Kos96].

Definition 6.2.1 Suppose (X, wx) and (Y, wy) are continuous categories. Let F' : X —
Y be a finitary functor. The natural transformation wg : wy - F' = Ind(F’) - wx defined
as a mate of the invertible natural transformation sup : F'-supy = supy -Ind(F') under
the adjunctions wx - supx and wy - supy is called a way-below mate of F. Explicitly,

wx Ind(F) lmdy)

where ey denotes the counit of wy 4 supy and 7x denotes the unit of wx - supy.
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Lemma 6.2.2 Way-below mates of finitary functors form a lax natural transformation
w : lcont = Ind.

Proof. Using the fact that sup : Ind = 1f 1 is a pseudonatural transformation, it is
easy to verify all the appropriate equalities from Definition 3.3.17. O

Definition 6.2.3 Suppose (X, wx) and (Y, wy) are continuous categories. Let F' : X —»
Y be a finitary functor. F' is said to be way-below preserving, if the way-below mate wp
of F' is a natural isomorphism.

It is clear that way-below preserving functors are closed under composition, thus one
can form a 2-quasicategory CONTy;, having all continuous categories as 0-cells, all way-
below preserving functors as 1-cells and all natural transformations as 2-cells.

It is straightforward that if X and Y are continuous domains, then a continuous func-
tion f: X — Y is way-below preserving precisely when the following holds for any z, y
in X:

if z<xy then f(z)<y f(y)

It follows that for a finitary retraction (F, R, «) from a continuous category Y to a
continuous category X, the functor E need not be way-below preserving as the following
example shows:

Example 6.2.4 Let Y be a one-element poset, let X be the unit interval with the usual
order. Then both Y and X are continuous DCPOs (Y is even algebraic). Define F as a
constant with value 1 and let R be the unique (continuous) mapping from X to Y. It is
clear that (E, R, 1y) is a finitary retraction, but E is not way-below preserving. a

The above example shows that CONT,,, is not closed under finitary retracts in CAT.
We however show in Corollary 6.2.7 that CONT,y, is closed in CAT under (e,p)-adjunctions
(recall 4.1.7). We prove a slightly more general result first.

Theorem 6.2.5 Suppose (X, wx) and (Y, wy) are continuous categories. Let L 4 R be a
finitary adjunction with L : Y — X. Then L is a way-below preserving functor.

Proof. Denote by 1 and ¢ the unit and the counit of L 4 R. Since R is a finitary functor,
we can compute the way-below mate wg of R. We claim that the natural transformation

(6.3)
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is the inverse of wy,. This is straightforward: use the facts that w : 1cont = Ind is a lax
natural transformation and triangle identities for L 4 R. a

Remark 6.2.6 The above theorem is a generalization of Proposition 3.1.14 of [AbJ96]
which states that a left adjoint with a finitary right adjoint between continuous domains
preserves the way-below relation. O

Corollary 6.2.7 Suppose (X, wx) is a continuous category. Let Y be an arbitrary cate-
gory and let E 4 P be an (e,p)-adjunction with E : Y — X. Then Y is a continuous
category and E s way-below preserving.

Proof. Since the counit of £ 4 P is an isomorphism, Y is a finitary retract of X and
therefore by Theorem 6.1.11 it has a structure of a continuous category (Y, wy). By the
previous theorem F is way-below preserving. O

The following observation is easy to prove:

Lemma 6.2.8 Let (X,C) be a poset, let x, y be arbitrary elements of X. Then the
following are equivalent:

1.z y.

2.{2zeX|zCz}C{ze X |2k y}.

The above lemma leads to the following concept of an abstract way-below relation in
a continuous category (see [JJ82], p. 267):

Definition 6.2.9 Let X be a continous category. A morphism f : Ix(z) — wx(y) in
Ind(X) is called a wavy arrow from x to y in X.

Recall the notion of a flat distributor from Definition 4.4.2. The following is proved
in [JJ82]:

Theorem 6.2.10 Let X be a continuous category. If we denote by W (x,y) the set of
all wavy arrows from x to y, then W(z,y) is an object function of a flat distributor
W : X ——= X. Moreover, there is a natural transformations € from W to the identity
distributor ix on X and a natural isomorphism § from W to W - W which make the triple
(W,e,60) a comonad of distributors.

Remark 6.2.11 The definition of a distributor ¢ : A —— B required categories A and
B to be small. One can obviously drop this requirement and define a distributor ¢ :
A ——= B to be a functor ¢ : B x A — Set. There is a problem that such things
cannot be composed in general, since this would involve a quotient of a class which may
not be a set. In the special case of a distributor W described above one can, however,
replace this class by a small set (see [JJ82], p. 269). Thus, W - W is a distributor in the
extended sense, i.e. it is a functor from X% x X — Set.
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Since distributors form a bicategory one also has to be careful about the notion of
a comonad. By saying that (W,e,d) is a comonad of distributors we mean that the
following diagrams of natural transformations commute (in the notation of the proof of

Lemma 4.4.5):
w
-1 -1
Pw ld Aw
/ (6.4)

W-(W-W) —22Y (W W) - W< W-W
W(ST TJ (6.5)
w-w - w

|

Comonads of flat distributors on a category form, seemingly, a natural candidate for
generalizing abstract bases in the sense of Abramsky and Jung ([AbJ96], Chapter 2) —
see also Definition 6.1.1. This is a work in progress and we do not include any results in
this spirit.
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Subobjects and Universal Objects

In this chapter we first define two notions which generalize the notion of a subobject of a
domain. Since domains are categories, subobjects should be (full) subcategories and the
embedding should somehow reflect the corresponding structures.

We have already encountered generalizations of classical notions of

e finitary retracts — Definition 6.1.9,
e embedding-projection pairs — Definition 4.1.7.

The contents of Section 7.1 is a more thorough study of the above notions in the
context of various defininitions of a domain; we are interested in the following question:

Suppose that K is a 2-quasicategory of domains and suppose we are given a notion
of a subobject. Is K closed under this notion of a subobject in CAT?

Subdomains in classical domain theory are important because of a technique (devel-
oped by Dana Scott) of solving recursive domain equations of type X = F(X) based on
Theorem 2.2.3 and Scott’s result on the existence of a universal domain.

The idea is that there is a special Scott domain U and a process which assigns a
continuous mapping f : U — U to the functor F. Solving the equation X = F(X)
then boils down to finding a fixed point of f. There is, however, a restriction: we have to
deal with the so called countably based Scott domains — i.e. domains having a countable
set of compact elements. This restriction is nothing grave: Scott domains in practical
applications are countably based.

For the above process, the domain U must have the following property:

any countably based domain is isomorphic to a subdomain of U.

Such objects U are called universal. Since it is completely legitimate to talk about
CUSL embeddings instead of embedding-projection subdomains, the existence of a uni-
versal domain restricts to the existence of a universal CUSL. In [Sc82b] Dana Scott has
constructed a universal countable CUSL K, i.e. he proved that for any countable CUSL
A there is a CUSL embedding f : A — K.

The existence of universal domains in classical domain theory is of a great importance.
If D is any category of domains and embeddings (i.e. morphisms which correspond to

91
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subobjects), then the existence of a universal domain in D asserts the existence of a D-
object U, such that for any D object D there is an embedding of D to U. In categorical
terminology, U is a weakly terminal object of D.

In later sections of this chapter, we prove the existence of weakly terminal objects in:

(PLOT,), — the quasicategory of all Plotkin categories (see Definition 7.3.1) and
normal embeddings — Corollary 7.3.10,

(FCC.), — the quasicategory of all FCC categories and FCC embeddings — Corol-
lary 7.4.7.

Since normal functors correspond to (e,p)-adjunctions by Theorem 4.3.12, results on
weakly terminal objects in (PLOT,), and (FCC,), provide us with universal domains w.r.t.
(e,p)-adjunctions.

7.1 Subobjects

Recall that we have defined the following 2-quasicategories of domains:

FILT — the 2-quasicategory of all categories having small filtered colimits, all finitary
functors and all natural transformations,

IND — the 2-quasicategory of all inductive categories (=categories having small
filtered colimits and initial objects), all finitary functors and all natural transforma-
tions,

Ny-ACC — the 2-quasicategory of all finitely accessible categories, all finitary func-
tors and all natural transformations,

GDOM — the 2-quasicategory of all generalized domains (=finitely accessible cate-
gories having initial objects), all finitary functors and all natural transformations,

SC — the 2-quasicategory of all Scott complete categories, all finitary functors and
all natural transformations,

CONT — the 2-quasicategory of all continuous categories, all finitary functors and
all natural transformations.

CONTp, — the 2-quasicategory of all continuous categories, all way-below preserv-
ing functors and all natural transformations.

All the above 2-quasicategories are viewed as sub-2-quasicategories of FILT.

Finitary Retracts as Subobjects

Recall the definition of a finitary retract (Definition 6.1.9).
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Definition 7.1.1 Let K be a 2-quasicategory of domains. We say that K is closed under
finitary retracts in CAT provided the following holds: if X and Y are arbitrary categories
with X in K and if (E, R, «) is a finitary retraction from Y to X then Y is in K.

The first result on finitary retracts follows immediately from Lemma 6.1.10 and The-
orem 6.1.11:

Theorem 7.1.2 The 2-quasicategories FILT, IND and CONT are closed under finitary
retracts in CAT.

Negative results are as follows:

Theorem 7.1.3 Neither CONT,y,, nor SC, nor GDOM nor Ry-ACC are closed under
finitary retracts in CAT.

Proof. Recall that we have shown in Example 6.2.4 that CONT,, is not closed under
finitary retracts.

To prove the rest of the statement, let X denote the unit interval with the usual order.
The ideal completion X* of X is a locally finitely presentable category with an initial
object. X is a finitary retract of X*, since it is a continuous lattice. X is, however, not a
finitely accessible category — its only finitely presentable object is 0. a

(e,p)-Adjunctions as Subobjects

Recall the notion of an (e,p)-adjunction (Definition 4.1.7). An (e,p)-adjunction L 4 R
with L : Y — X exhibits Y essentially as a full coreflective subcategory of X.

Definition 7.1.4 Let K be a 2-quasicategory of domains. We say that K is closed under
(e,p)-subobjects in CAT provided the following holds: if X and Y are arbitrary categories
with X in K and if L 4 R is an (e,p)-adjunction with L : Y — X then Y is in K.

Theorem 7.1.5 The 2-quasicategories FILT, IND, CONT and CONTy, are closed under
(e,p)-subobjects in CAT.

Proof. The 2-quasicategories FILT, IND and CONT are closed under (e,p)-subobjects in
CAT since each (e,p)-adjunction is a special case of a finitary retraction. Corollary 6.2.7
shows that CONTy, is closed under (e,p)-subobjects. O

Negative results are as follows:

Theorem 7.1.6 Neither SC, nor GDOM nor Ry-ACC are closed under (e,p)-subobjects in
CAT.

Proof. Use the unit interval X from the proof of Theorem 7.1.3. There is an (e,p)-
adjunction wx - supx from X to X*, since the unit of this adjunction is an isomorphism
(see page 86). X* is a locally finitely presentable category, but X is not finitely accessible.

O
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7.2 The General Embedding Theorem

The following proofs of the existence of weakly terminal objects use the Embedding The-
orem of Véra Trnkova from [Tr66b]. Let EMB denote the quasicategory of all categories
and full embeddings. For a (quasi)category C, denote by C " the (quasi)category of all
C-morphisms. The Embedding Theorem reads as follows:

Theorem 7.2.1 Suppose that C is a (not neccessarily full) subquasicategory of EMB, and
that C is a small category. Then C has a weakly terminal object, provided that the following
conditions hold:

1. C has colimits of transfinite chains D : (T, <) — C ", where Dt have small
domain and codomain for allt € T,

2. each C-object contains an isomorphic copy of C,

3. if K is a C-object, L contains C and F' : K — L is an isomorphism which is identity
on C, then L is a C-object,

4. for any small cone E; : K — K;, (i € I), of small categories in C there exists a
cocone F; : K; — L, (i € I), with L a small category in C such that F;- E; = F;- E};
foralli,j€l,

5. a category K is a C-object iff there is a transfinite chain D : (T, <) — C with Dt
small for all t € T, s.t. K = colim D.

Proof. See [Tr66b]. 0

7.3 A Universal Plotkin Category

Recall from Definition 4.3.14 that an Ng-category K with an initial object is an Ny-Plotkin
category if each finite diagram D : D — K factors through a normal embedding F' : A —»
K where A is a finite category with an initial object. Our definition was motivated by the
notion of a Plotkin poset. Plotkin posets are precisely posets arising as posets of compact
elements of SFP domains (see e.g. [GS90]). We have proved a similar characterization
of Wy-Plotkin categories in Lemma 4.3.16. Let us now drop the requirement that the
category K should be a category with countably many objects and finite hom-sets. More
precisely, we define:

Definition 7.3.1 Let K be a category with an initial object. Then K is called a Plotkin
category if each small diagram D : D — K factors through a normal embedding F' :
A — K where A is a small category with an initial object.

Remark 7.3.2 By definition, every small category with initial object is a Plotkin cate-
gory, since the identity functor is a normal embedding. O



7.3 A Universal Plotkin Category 95

Let PLOT, denote the 2-quasicategory of all Plotkin categories, all normal embed-
dings and all natural transformations between them. As usual, (PLOT.), denotes the
corresponding underlying quasicategory.

The following lemma provides an easy characterization of Plotkin categories:

Lemma 7.3.3 K is a Plotkin category iff there is a transfinite chain D : (T, <) —
(PLOT,), with all Dt small, s.t. K= colim D.

Proof. The proof is essentially the same as the proof of Lemma 4.3.16. O

The existence of a Plotkin category which is universal w.r.t. normal embeddings will
follow after verifying all assumptions of Theorem 7.2.1 for the data C = (PLOT,), and C
the one-morphism category 1.

Lemma 7.3.3 is precisely Condition 5. of Theorem 7.2.1. It remains to verify Condi-
tions 1.-4. of the Embedding Theorem. We do this in a series of lemmas below.

Lemma 7.3.4 (PLOT.), " has colimits of transfinite chains D : (T, <) — (PLOT,), ",
where all Dt have small domains and codomains.

Proof. Suppose D : (T,<) — (PLOT,), " is a transfinite chain. Denote Dt = F; :
K, — L, and D(s <t) = (is, jst), i-e. for s <t we have a commutative square

st

Ks Kt
Fy Fy (7.1)
Lg . Lt

Jst

of small Plotkin categories and normal embeddings.

First, it is clear that the colimit of D exists in EMB™: denote by K, the category on
the class of objects U{Ob(K,) | t € T} such that each category K, is a full subcategory
of K. Denote the full embeddings by #;,, : K, — K. The category L, and full
embeddings ji : Ly — L., are defined in a similar way. There is a unique functor
Fy : K — L, such that all the squares

ist

Ks KOO
Fy Foo (7.2)
Ls LOO

jst

commute. Then F, : K., — L, is a colimit of D in EMB™. It remains to prove
that K, L., are Plotkin categories and that the functors 4, jico and Fi are normal
embeddings.



96 Chapter 7. Subobjects and Universal Objects

Clearly, both the categories K, and L., are Plotkin categories (Lemma 7.3.3). The
functors 7;00, Jico and Fi clearly preserve an initial object.

The functors 40, jio and Fi, are normal embeddings if (7', <) has the greatest element.
Suppose this is not the case.

To prove that #;,, is a normal embedding, take any K_-object b and any finite non-
empty diagram X : X — K /b. Then there exists s > ¢ such that b is K,-object and
the whole diagram X lies in K,/b. Then 1 : b — b is the vertex of a compatible cocone
on X.

The proofs that j;» and Fy, are normal embeddings are similar. O

Lemma 7.3.5 Fach Plotkin category contains an isomorphic copy of 1. If K is a Plotkin
category, L contains 1 and F' : K — L is an isomorphism which is the identity functor
on 1, then L has an wnitial object.

Proof. Trivial. O

We are now going to recall, for notational convenience, some of the standard concepts
concerning the presentation of categories via graphs (in the categorical sense, i.e. large
directed multigraphs) and commutatitvity conditions — see e.g. [Bo94] or [Sch70].

Definition 7.3.6 A graph G consists of a set V(G), called a set of vertices of G and
for each pair v, v’ of vertices a set G(v,v'), called the set of arrows from v to v'. For
f € G(v,v') the vertex v is called the domain of f, v’ the codomain of f. A path from
v to v’ is a finite sequence (Vni1, fn,Un,--- Vo, f1,v1) of alternating vertices and arrows
such that vy = v, v,.; = v/ and the domain of f; is v;, the codomain of f; is v;;; for
i€ {1,...,n}. Any sequence (vjt1, fj, Vj,...Viy1, fi,vi) with 1 <i < j+1<n+1 wil
be called a subpath of (Vni1, fn, Un, - --Va, f1,01)-

Clearly, each small category K gives rise to a graph Graph(K). On the other hand,
there are graphs which are not categories. Given a graph G, we will describe how to
construct a category from it. A path category Path(G) is defined as follows:

e Path(G)-objects are vertices of G,
e the set of Path(G)-morphisms from v to v’ is the set of all paths from v to v/,

e the composition is defined as a concatenation

(v;n+1;gm, - g1, Ull) * (Un-l—la f'rLa ey fla Ul) = (U;n,+1agma ---01,Un+1, fna ey flavl)
provided v, 41 equals v].

These data obviously define a small category. If we start with a small category K, then
the categories Path(Graph(K)) and K are different. To regain the category K some paths
would have to be identified. For identifying some paths in the path category we introduce
the notion of a set of commutativity conditions.

Definition 7.3.7 Let Path(G) be a path category of a graph G.
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1. A commutativity condition is a pair ¢ = (a1, ) of paths with the same domain and
codomain.

2. Given a commutativity condition ¢ = {(ay,as), two paths w;, we with the same
domain and codomain will be called c-equivalent, if
either they are equal,
or w; contains o, as a subpath and wy contains as as a subpath,
or wy contains oy as a subpath and wsy contains a; as a subpath.
3. Given a set Comm of commutativity conditions, paths w and w’ with the same
domain and codomain will be called equivalent, if there is a finite sequence of paths

w1, - ..,w, and commutativity conditions ci,...,c,_1 in Comm such that w = w,
w' = w, and for all s € {1,...,n — 1} the paths w; and w;,; are ¢;-equivalent.

It is well-known (and easy to verify) that each set Comm of commutativity conditions

defines a congruence on the category Path(G) of paths — we will denote the factor
category by Path(G)/Comm. We denote by [vni1, fu,---, f1,v1] the equivalence class
of a path (vn41, fn, .-, f1,v1). Without loss of generality we can always assume that if

(a1, o) € Comm, then (o, o) € Comm.

Lemma 7.3.8 For any small cone E; : K — K;, (i € I), of small categories in (PLOT,),
there exists a cocone F; : K; — L, (i € I), of small categories in (PLOT,), such that
F,-E;=F;-E; foralli,j€l.

Proof. Without loss of generality, suppose that K is actually a full subcategory of each
K, and that each E; is the inclusion functor. Let G be the graph induced by the union
of all categories K, for i € I. Consider the path category Path(G) and introduce the set
Comm which contains commutativity conditions of the following forms:

(i) {(c,g,b, f,a),(c,g- f,a)) where f:a — b and g: b — c are K;,-morphisms,
(ii)
(iii)

(a,14,a), (a)) for all K;-objects a,

(
((b,g9,y,m,z, f,a),(b,g - m,z, f,a)) for K-morphism m : * — y, K;,-morphism
fia— x, Kj-morphism g : y — b, i # 7,

(i) (b9, m.7, f,0), (b, g, m - f,a)) for K-morphism m : & —» y, K, morphism
fi1a— x, Kj-morphism g : y — b, 7 # j.

Then the following facts are clear:

e if both a and b are K;-objects, then each path from a to b is equivalent to a path
(b, f,a) for a suitable K;-morphism f :a — b,

e if a is a K;-object and b is a K;-object for ¢ # j, then each path from a to b is
equivalent to a suitable path (b, g, z, f, a), where z is a K-object and f : a — z is
a K;-morphism, g : ¥ — b is a K;-morphism,
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e two paths (b,g,z, f,a) and (b,k,y, h,a) for a K;-object a and a K;-object b and

K-objects z, y, with ¢ # j, are equivalent if and only if there are

(i) a finite “zig-zag” of K-morphisms my : zg — x1, mg : T3 —> Xy, ..., Moy, °
Top — Top_q for n > 0, where z¢y = x, 22, = ¥,

and

(ii) K;-morphisms f, : a — x, for s € {0,...,2n} and K;-morphisms g, : z, —> b
for s € {0,...,2n}, where fOZf: 90 =9, f2n:h: g2n:k

such that all the corresponding triangles of m’s and f’s commute in K; and all the
corresponding triangles of m’s and ¢g’s commute in K.

Define L to be the factor category Path(G)/Comm. Define the functors F; : K, — L to
be the identity on K;-objects and F;(f) = [k', f, k] for K;-morphisms f : £ — k'. Clearly,
all F; are full embeddings. We will consider each K, as a full subcategory of L.

It is clear that the category L has initial object and that the equality F;- E; = F) - Ej

holds for all 7,5 € I. Since L is a small category, it is a Plotkin category.

Let us verify that each embedding F; is normal.
Take any L-object z. We will prove that F;/z is filtered. This is clear, if z is a

K;-object. Suppose this is not the case, i.e. suppose that z is a K;-object for some j # 1.

1. The category F;/z is non-empty, since F; clearly preserves the initial object and

hence F; 1 — z is a F;/z-object.

. Let [z, 94,0, fa,a] and [z, gy, O, fo,b] be F;/z-objects. Then [z, g,,d'] and [z, gs, V']

are Ej/z-objects, therefore there is an E;/z-object [z, g, z] with z a K-object, which
is the vertex of a compatible cocone for [z, g,,a'] and [z, gy, b']. Denote the mor-
phisms of the cocone by [z,h,d] and [z, k,b]. Then [z, h,d, fo,a] = [x,h - f4,q]
and [z, k, 0, fp,b] = [z,k - fp,b] are E;/z-objects. Since z is a K;-object, [z, 1, z]
is the vertex of a compatible cocone for [z,h - f,,a] and [z,k - fp,b]. Therefore
[2,9,7,1;,z] = [2,g,z] is the vertex of a compatible cocone for [z, g4, d', fa,a] and
(2, gb, V', fp, b] in F;/z with the cocone morphisms [z, h - f,,a] and [z, k - f3, b].

. Let [b, f,a] and [b, g, a] be parallel paths in F;/z. This means that there is a path

[z,k, b, h,b] such that [z, k,b',h,b] % [b, f,a] = [z,k,b', h,b] * [b, g,a]. Then by the
definition of composition we obtain [z, k,V', h,b, f,a] = [z, k, b, h, g, a]. Since

[Z’kablahabafaa’]: [Zak'habafaa] = [Zakablah'faa’]

and
[z,k,b',h,b,g,a] = [Z,k ) habagaa'] = [Z,k,b,,h' gaa]

there is a finite “zig-zag” of K-morphisms m; : o — x1, mo : 9 — 21, ...,
Moy : Toy — Loy, 1 for n > 0, where b’ = g, b’ = x4,, and there are K;-morphisms
fsa— xzgfors € {0,...,2n} and K;-morphisms g, : z, — bfor s € {0,...,2n},
where fo = h-f, go = k, fon = h-g, g2, = k such that all the corresponding triangles
of m’s and f’s commute in K; and all the corresponding triangles of m’s and g’s
commute in K;. Denote the diagram of the “zig-zag” by Z, put S = {0,...,2n}.
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Then Z yields a finite non-empty diagram D in F}/z: objects are g;’s and morphisms
are m;’s. Since E;/z is filtered, there is a vertex [z, m, Z| of a cocone for D with the
cocone morphisms [Z, ks, 25| for s € S. Especially we have that

m'k’o:go:k:gzn:m'an

holds in K, thus, by the same argument as above there exists a compatible cocone
for the parallel pair of E;/z-morphisms [z, ko, Zo] and [z, ko, zo]. Denote its vertex
by [z, 7, ] and the cocone morphism by [Z, ¢, Z].

Then [b, f,a] and [b, g, a] form a parallel pair of morphisms in E;/Z, since
(c-ko-h)-f=c-(ko-h-f)=c-(kan-h-g)=(c-kep) -h-g=(c-ko-h)-g.

Thus for [b, f,a] and [b, g, a] there exists a compatible cocone with vertex [z, m, z]
and cocone morphism [z, ¢, b].

The F;/z-object [z,, %, m, x| forms the vertex of a compatible cocone for [b, f, a]
and [b, g, a] with the cocone morphism [z, ¢, b].

|

Remark 7.3.9 One can show more: each Fj in the above proof satisfies the following:

Suppose that D : D — K, is a finite non-empty diagram such that F;D is L-
consistent. Then D is K;-consistent and F; preserves the colimit of D.

It suffices to prove the statement for L-consistent
(i) discrete binary diagrams in K;,

(ii) parallel arrows diagrams in K.

Ad (i): Let a, b be K,;-objects such that there is a compatible cocone on a, b in L.
First, we will show that the diagram a and b is compatible in K;. This is clear if the
compatible cocone lies in K;. Suppose the vertex z of the compatible cocone lies in K; for
j # 1, i.e. there are L-morphisms [z, g4, d', fa,al, [2, g, V', f5,0]. Then [z, g,,d’, f,, a] and
(2, g, V', f, b] form a discrete diagram in F;/z. By Lemma 7.3.8, a and b are compatible

in K;. It is clear that if the sum of a and b exists in K;, then F; preserves it.

Ad (ii): Let a, b be K;-objects, and let [b, f,a] and [b, g, a] be parallel paths having a
compatible cocone in L. Using Lemma 7.3.8 one can show that [b, f,a] and [b, g, a] have
a compatible cocone in K;. It is clear that if the coequalizer of f and g exists in K;, then
F; preserves it.

Having in mind that each F; preserves initial objects, we have proved that F;’s “behave
like FCC embeddings”. O

Corollary 7.3.10 The quasicategory (PLOT,), has a weakly terminal object, i.e. there
exists a Plotkin category U such that for any Plotkin category K there is a normal embed-
ding F: K — U.
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7.4 A Universal FCC Category

Small FCC categories have been characterized as categories of finitely presentable objects
of Scott complete categories (see Definition 4.3.8).

Recall that FCC, denotes the 2-quasicategory of all FCC categories, all normal embed-
dings and all natural transformations between them. The existence of a universal category
among not neccessarily small FCC categories will follow after verifying all assumptions of
Theorem 7.2.1 for the data C = (FCC.), and C = 1.

Lemma 7.4.1 (FCC.), " has colimits of transfinite chains D : (T,<) — (FCC,), ",
where all Dt have small domain and codomain.

Proof. The proof is similar to that of Lemma 7.3.4 and we keep the notation of that
proof.

It suffices to prove that the categories K., L. are FCC categories and that the
functors 4400, Jico and F, are FCC embeddings.

This is clear if (T, <) has the greatest element. Suppose this is not the case.

Let X : X — K be a finite K_-consistent diagram. Then there exists ¢ € T such
that X factors through #;,, and X is K;-compatible. The colimit of X in K, is a colimit
of X in K by the definition of K. Thus K is FCC category. The proof that L., is
FCC category is similar.

Let X : X — K be a finite diagram such that 4;,, - X is K-consistent. Then
there is s > ¢ such that the compatible cocone of i, - X lies in K,. It follows that
X is K;-consistent, since iz is an FCC functor. Clearly iy (colim X) = colim(iye - X).
Analogously, ji« is an FCC functor. The proof that F, is an FCC functor is similar. O

Lemma 7.4.2 Fach FCC category has an initial object L. and the corresponding subcat-
egory is an tsomorphic copy of 1. If K is an FCC category, L contains 1 and F: K — L
s an tsomorphism which is the identity on 1, then L is an FCC category.

Proof. Trivial. O

Lemma 7.4.3 For any small cone E; : K — K, (i € I), of small categories in (FCC,),
there exists a cocone G; : K; — M, (i € I), of small categories in (FCCe), such that
Gi-E;=Gj-Ej foralli,jel.

By Remark 7.3.9 we have almost what we need. The functors F; defined in 7.3.8
behave like FCC functors. The category L, however, need not be FCC — it may lack the
desired colimits of finite L-consistent diagrams. We will “improve” this by an iterative
process of adding colimits to L below.

We need the following auxiliary lemma before we will be able to prove Lemma 7.4.3.

Lemma 7.4.4 Let A be a small category, let F denote a set of diagrams which have a
compatible cone in A. Then there is a small category AP and a full embedding £ : A —
AY) such that:

1. For each diagram D in F, the functor ED has a limit.
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2. E preserves all limits.

3. If X : X — A is any diagram such that EX has a compatible cone in AP then
X has a compatible cone in A.

Proof. Denote by Y : A — [A%, Set| the covariant Yoneda embedding. It is well-
known that Y is a full embedding which preserves limits and that the category [A, Set]
is complete. Define A(f) to be the full subcategory of [A,Set] on objects of the form
Ya for A-objects a and a chosen limit limY D for each D € F. Denote the limit cone
for imY D by A?) : limY D — Y D. Now, define F : A — A to be the codomain
corestriction of Y. Clearly, F is a full embedding which preserves limits. Let X : X — A
be any diagram such that E - X has a compatible cone 7 : const, = EX in AP, We
will prove that X has a compatible cone in A.

o If const, = Fconst, for some A-object a, then v = FEyu for i : const, = X, since
E is full. Thus, X has a compatible cone in A.

e If z is of the form limY D for some D € F, consider the compatible cone ¢ :
const, => D (D is supposed to have a compatible cone, say with domain a, in A).
Then there is a unique A)-morphism f : Ea —» z such that E§ = A(?) . f. Then
v f:constg, = E - X is a compatible cone on E - X. Since E is full, v - f is of
the form Eu for p: const, — X.

Remark 7.4.5 The dual construction is denoted by Az). a

Proof of Lemma 7.4.3. Recall that we are given a small cone F; : K — K;, (i € I),
of small categories in (FCC,),. We want to show the existence of a small FCC category
M and of a cocone G; : K; — M, (¢ € I), in (FCC,), such that G, - E; = G; - E; for all
1,7 € I. Let F; : K, — L be the cocone from Lemma 7.3.8. We know by 7.3.9 that each
F; satisfies the following:

Suppose that D : D — K, is a finite non-empty diagram such that F;D is L-
consistent. Then D is K;-consistent and F; preserves the colimit of D.

We will construct a countable chain of categories (F™+1) : MM —s M | € w) as
follows:

e Define M(O) =L

e Suppose we have constructed M™ for n € w. Denote by F® a (representative)
set of all finite diagrams D : D —» M®™ which are M™_consistent and which do
not factor through any F;. Define the category M®+D t6 be M(n()n), and the functor

—’F
Funt) - My M+ t6 be the full embedding.

Then (F(+D) : M® — M®*+D | 5 € w) is a chain of small categories and full embed-
dings. Define M to be a colimit of it in EMB, and define the functors F«) : M™ —s M
to be the colimit embeddings.
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(I) The category M is an FCC category, because:

(i) Tt has the initial object L inherited from K, since L is preserved by each F;
and each F(mn+D),

(ii) Let D : D — L be a finite M-consistent diagram. Then there is n € w such
that the given cocone of D lies in M("), thus the colimit of D exists in M1
and is preserved by F(+1w),

(IT) Define the functors G; : K; — M to be the composition FO«) . F. Then clearly
G- E; =Gj- Ejfori,7 € I. Moreover:

(i) The functor G; preserves the initial object.

(ii) Suppose D : D — K, is a finite L-consistent diagram. Then there is n € w
such that the given cocone of D lies in M("), therefore it is M(")—consistent
(for simplicity we regard the embeddings as actual inclusions). Then applying
the (dual of) Lemma 7.4.4, D is M(©-consistent and by Lemma 7.3.8 it is
K,-consistent. The functor G; clearly preserves the colimit of D.

|

Lemma 7.4.6 K is an FCC category iff there is a transfinite chain D : (T,<) —
(FCCe), with all Dt small, s.t. K = colim D.

Proof. =-: This is clear if the category K is small. Suppose K is large. Enumerate the
class Ob(K) of all K-objects as (a, | @ € On) by the class On of all ordinals with | = ay.
The well-ordered class (7, <) will be the class of all ordinals, the small categories Dt will
be defined by transfinite induction as follows:

e K, is the one-morphism category 1.

e Suppose t is an ordinal such that the small FCC categories Ds for s < t and FCC
functors D(s < s') for s < s’ < t have been defined.

If ¢ is a limit ordinal, define Dt to be the colimit of the chain (D(s < §') : Ds —
Ds' | s < s < t) in EMB, the functors D(s < t) : Ds — Dt are the colimit
embeddings. It is routine to verify that Dt is a small FCC category and that the
functors D(s < t) are FCC functors.

If t = s+ 1 is a successor ordinal and the FCC category Ds has been defined, the
FCC category Dt is defined as follows:

First, put L = Ds.

Suppose the category L™ has been defined. Pick « to be the least ordinal such
that the K-object a, is not in L("). Define L to be the full subcategory of K on
all L™-objects and on object a,, where « is the least ordinal such that the K-
object a, is not in L™, Denote by F™ the set of all finite L-consistent diagrams
which do not have a colimit in L™. The category L™*Y is the full subcategory of
K on L™-objects and all objects of the form colim D for D € F©. The functor
Fnt) . 1M 1+ ig defined as the obvious full embedding.
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The category D(s + 1) is defined as a colimit of the countable chain Fn+1) .
L™ — L™+ The functor D(s < s+ 1) is defined as the full embedding of Ds in
D(s+1). The proof that D(s+ 1) is an FCC category and D(s < s+ 1) is an FCC
functor is analogous to the proof of Lemma 7.4.3.

We have defined a transfinite chain of small FCC categories D¢, such that clearly K =
colim D.
<: Follows from Lemma 7.4.1. |

Corollary 7.4.7 The quasicategory (FCC,), has a weakly terminal object, i.e. there exists
an FCC category U such that for any FCC category K there is an FCC functor F : K —
U.

7.5 Size Considerations

The categories U from Corollaries 7.3.10 and 7.4.7 are not small, therefore their free
completions w.r.t. small filtered colimits would not be generalized domains. This problem
can be avoided if we restrict the notion of universality to “universal w.r.t. x-categories”,
where « is an inaccessible cardinal — recall Definition 3.1.1.

Let k be an inaccessible cardinal (see page 14). Since the x-th level V; of the cumula-
tive hierarchy is a model of ZFC (cf. [Je78], Lemma 10.2), the Embedding Theorem 7.2.1
holds in V, if we replace “small” by “of cardinality < x” and “large” by “of cardinality ”
in the definitions of all notions appearing in the hypotheses of the Embedding Theorem.

Also, modify Definition 7.3.1 in the obvious way to obtain the notion of a k-Plotkin
category:

Definition 7.5.1 Let K be a x-category with an initial object. Then K is called a k-
Plotkin category if each k-small diagram D : D — K factors through a normal embedding
F : A — K where A is a k-small category with an initial object.

The above notion is clearly a generalization of the notion of an Wy-Plotkin category
(see 4.3.14).

Denote by kEMB the category having x-categories as objects and full embeddings as
morphisms, and by

o xPLOT, the subcategory of kEMB having x-Plotkin categories as objects and nor-
mal embeddings as morphisms,

o kFCC, the subcategory of kEMB having FCC k-categories as objects and FCC
embeddings as morphisms.

Let C be the one morphism category 1. It can be verified in the same way as in
sections 7.3 and 7.4 that the hypotheses the “s-small version” of the Embedding Theorem
are fulfilled. Therefore we obtain the following:
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Corollary 7.5.2 Let k be an inaccessible cardinal. Then kPLOT, has a weakly terminal
object, i.e. there exists a k-Plotkin category U such that for any k-Plotkin category K
there is a normal embedding F' : K — U.

Corollary 7.5.3 Let k be an inaccessible cardinal. Then kFCC, has a weakly terminal
object, i.e. there exists FCC k-category U such that for any FCC k-category K there is
an FCC embedding F' : K — U.

7.6 Finitary Version of the General Embedding The-
orem

The construction can also be restricted to x = N, for:
1. The category RoPLOT  of No-Plotkin categories and normal embeddings.

2. The category PlotPos of Plotkin posets and normal embeddings. Our construc-
tion thus gives an independent proof that a universal SFP domain exists — Corol-
lary 7.6.2.

3. The category RoCUSL  of countable CUSLs and CUSL embeddings. In fact, in
Corollary 7.6.3 we present the construction of a universal Scott domain, independent
of the construction in [Sc82b].

We show, however, that the construction cannot be carried out for the category NoFCC
of FCC Ny-categories and FCC embeddings. Namely, in Theorem 7.6.9 we show that
RoFCC does not have a weakly terminal object. This result comes from the joint paper
of Véra Trnkova and the author [TrV97].

In this section we work in the finite set theory. That is: “small” means “finite”, “large”
means “countable infinite”.

Let us indicate how to verify the hypotheses of the finitary version of Theorem 7.2.1 for
the category RePLOT . Recall that RgPLOT is a subcategory of RgEMB — the category
of all Ny-categories and full embeddings.

1. The category NOPLOTe_’ has colimits of countable chains — mimic the proof of
Lemma 7.3.4.

2., 3. These hypotheses are trivially fulfilled by any R,-Plotkin category.

4. Given the diagram E; : K — K;, (i € I), I a finite set, then the proof of
Lemma 7.3.8 provides us with a finite category L and normal embeddings F; :

5. Any colimit of a countable chain of finite Xy-Plotkin and normal embeddings is an
Ro-Plotkin category (see 4.3.16).

Thus we obtain the following corollary:
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Corollary 7.6.1 The category RgPLOT  has a weakly terminal object, i.e. there exists an
No-Plotkin category U such that for any No-Plotkin category K there is a normal embedding
F:K— U.

The assumptions of the finitary version of Theorem 7.2.1 are also satisfied as it is
readily seen if in the previous considerations we replace RgPLOT by the category PlotPos
of Plotkin posets and normal embeddings. Thus we obtain a proof of the existence of a
universal SFP domain:

Corollary 7.6.2 (Universal SFP Domain) The category PlotPos has a weakly termi-
nal object, i.e. there exists a Plotkin poset U such that for any Plotkin poset K there is a
normal embedding F' : K — U.

The hypotheses of the finitary version of the Embedding Theorem are also fulfilled if
we consider the category NyCUSL of countable CUSLs and CUSL embeddings:

1. The category ¥;CUSL ™" has colimits of countable chains — mimic the proof of
Lemma 7.4.1.

2., 3. These hypotheses are trivially fulfilled by any countable CUSL.

4. Given the diagram E; : K — K;, (i € I), I a finite set, then the proof of
Lemma 7.3.8 provides us with a finite poset L and full embeddings F; : K; — L
which “behave like CUSL embeddings” by Remark 7.3.9. The crucial point here
is that one can add all possibly missing colimits in one step — use the dual of
Lemma 7.4.4 for the (finite) set F of finite consistent subsets of L to obtain the
desired finite CUSL M and CUSL embeddings G; : K; — M.

5. Any colimit of countable chain of finite CUSLs and CUSL embeddings is clearly a
countable CUSL. Any countable CUSL K can be expressed as a colimit of countable
chain of CUSL embeddings D : (T, <) — Xy,CUSL between finite CUSLs. This is
clear if K is finite. If K is infinite, enumerate K-objects as (a, | » € w) in such a
way that ag = L. The chain will be indexed by natural numbers.

Define DO as {L}.

Suppose that a finite CUSL Dn has been defined. Define the poset L to be the full
subposet of K on Dn-objects and a,,, where n is the least index such that a, ¢ Dn.
Let F be the finite set of all finite L-consistent subsets of L which do not have a
colimit in L. The poset D(n + 1) is the full subposet of K on all L-objects and
objects of the form sup D for D € F, D(n < n+1) : Dn — Dn + 1 is the full
embedding.

It is clear that all Dn are CUSLs, D(n < n + 1) are CUSL embeddings and that
K = colim D.

Corollary 7.6.3 (Universal Scott Domain) The category RoCUSL has a weakly ter-
minal object, i.e. there exists a countable CUSL U such that for any countable CUSL K
there is a CUSL embedding f: K — U.
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Remark 7.6.4 The point that we work with countable CUSLs instead of Ng-small FCC
categories is really substantial:

e The existence of colimits in a partially ordered set (regarded as a category) reduces
to the existence of sups. Thus in verifying the hypothesis 4. in the finitary version
of the Embedding Theorem we do not need the countable iterative process of adding
missing colimits from Lemma 7.4.3 — one can add the missing sups in one step.

e The finitary version of the Embedding Theorem cannot be used for the category
RoFCC of FCC Ny-categories as objects and FCC functors as morphisms as the
following counterexample shows:

The Ny-category K of finite sets and set functions is FCC category, but it cannot be
expressed as a colimit of a countable chain of Xy-small FCC categories. In fact, the
only full subcategories of K which are FCC are { L} and K. Thus Condition 5. of
the finitary version of the Embedding Theorem is not fulfilled.

|

The noneristence of universal Ry-small universal FCC category (Theorem 7.6.9) has
been proved in [TrV97]. It uses results from (categorical) universal algebra. For details
on the following notions we refer to [AR94].

Let V be a variety of finitary one-sorted algebras with the signature ¥ and the set of
equations F, denote by Alg(X, E) the category of V-algebras and homomorphisms. Let
U : Alg(3,E) — Set be the forgetful functor and let F' : Set — Alg(3,E) be a left
ajoint to U. Assume that there is a standard countable set V' of variables. Due to the
adjunction F' 4 U each free algebra over a finite set of k£ generators is the k-th copower of
a for k > 0, where a is the free algebra on a one-element set. We denote the free algebra
on k generators by £ ® a.

A finitary algebraic theory T generated by V is defined as the opposite of the category
of all V-free algebras F' X, where X is a finite (including empty) subset of V', regarded as
a full subcategory of Alg(3, E)®. A finitary algebraic theory T will be called Ro-small, if
it is an Ny-category.

Lemma 7.6.5 Let s = {s;}32, be a sequence of positive natural numbers, so = 1. Then
there exists an No-small finitary algebraic theory T, such that for all k > 0 it holds that
card T(k ® a,a) > s.

Proof. We will desribe a variety V of finitary algebras which will determine T.
We will denote the set of finitary operations for V as 3. We will define the set of k-ary
operations ¥*) for each k > 0 and then let ¥ = [J22, 2®:

»©@ = {0}, = {o\,...,0®}.

The set of equations E for V will be expressed as the union of the following three sets of
equations:

1. By =Upl, EY“), where E( ) is the set of equations
afk)(:vl, ooy xg) =0, agk) ex® ie{1,... s},

whenever z, = x4 for distinct o, fin {1,...,k}.
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2. By =Up, Eék), where Egk) is the set of equations
az(k)(xl,...,xk):& agk) ex® e {l,... s},
whenever z, = 0 for some o € {1,...,k}.

3. B3 =Upz,; Eék), where E:,(,k) is the set of equations

o™z, .. .,xa,T](l)(yl, s Y)s T2y -5 Tg) = 0, oM e x®), T](l) e x®,
> L, iE{l,...,Sk},
j € {1,...,81},

acd{0,...,k—1}.

Let us remark that above notations are indeed equations — one can easily “unwrap” the
conditional statements and describe the full list of equations.

We show that for any k£ > 0 the V-free algebra on k£ generators has a finite number
of elements greater than s;. This is clear for £ = 0. Let £ > 0 and denote the set
of generators as X = {g1,...,gx}. Distinct elements of FX are distinct (X, E)-terms
over X. These are 0, ¢1,...,9x and all terms of the form agl)(gw(l), oy Gaqy) for 1 < K,
ie{l,...;s}, m:{1,...,1} — {1,...,k} injective. All other terms are equal to 0
due to the set of equations E. It is clear that F'X has finitely many elements and that
card FX > s.

From the adjunction F' 4 U : Alg(3, E) — Set it follows that the set of homomor-
phisms from F'X to FY is finite for any finite sets X, Y.

Define now a as the V-free algebra on one generator and define T as the finitary theory
of V. Then T has the desired properties. O

The following lemma is probably a folklore in universal algebra. Nevertheless, we
provide a simple proof here.

Lemma 7.6.6 There exist uncountably many mutually non-isomorphic Rg-small finitary
algebraic theories.

Proof. Suppose that, to the contrary, {T® | > 0} is the countable list of all mutually
non-isomorphic Ry-small finitary algebraic theories. By diagonal argument we will produce
our Rg-small finitary algebraic theory T which is not isomorphic to any T®.

For any ¢ > 0 denote by a(; the free algebra on one generator in T and define a
sequence s = {5} as follows: s§) =1 and s\ = card T (k ® agy, ag)) for k > 1.

Define a sequence s = {s}° , as follows: sp = 1 and s, = 1+max{s,(f) lie{1,...,k}}
for £k > 1. By Lemma 7.6.5 there exists a Ng-small finitary algebraic theory T, such that
card T(k ® a,a) > s for all k£ > 0, where a denotes the free algebra on one generator in
T. Then T clearly cannot be isomorphic to any T — a contradiction. |

Lemma 7.6.7 Let T be an Ny-small finitary algebraic theory. Then there exists a full
embedding E : T? — A such that A is a FCC Ry-category and E preserves finite
colimits.
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Proof. We will define a countable chain (FG&+Y) : A, — A, | i € w) of Ry-small
categories and full embeddings.

Define A, as T.

Suppose that functors F7+! have been defined for all j < 7. Let F be the set of
finite non-empty diagrams in A; which have a compatible cocone in A, and which do not
factor through any FUJ+1 for j < 4. Apply the dual of 7.4.4 to obtain A, ; and the full
embedding F>"*1: A, — A, .

Define A as a colimit of the chain (F&HY : A, — A, | i € w). A is clearly an FCC
No-category. O

Remark 7.6.8 Using Lemma 7.6.6 we obtain the uncountable collection E; : (T®)P —s
A; (i € I) such that E; preserves finite colimits and A; is an FCC Rj-category for any
1€ 1. O

Theorem 7.6.9 The category RoFCC does not have a weakly terminal object, i.e. there
does not exist an FCC Rg-category U such that for any FCC Ry-category K there is an
FCC embedding F : K — U.

Proof. Suppose that a weakly terminal FCC Rj-category U exists. Take the uncountable
collection E; : (T®)® — A, from Remark 7.6.8. Regard the functors E; as actual
inclusions. Since U is weakly terminal, there exists an uncountable collection of FCC
embeddings F; : A, — U. Then there exist ¢, j in I, i # j such that Fau = Fjag).
Therefore F;(k ® a)) = Fj(k ® a;)) for any k > 0, hence the theories T® and TV) are
isomorphic, which is a contradiction. O



Chapter 8

The Fixed Point Calculus

The well-known limit-colimit coincidence for filtered colimits of domains and embedding-
projection pairs (see e.g. [SP82]) has been generalized by Paul Taylor in [Tay87] to general
adjunctions between domains (domains there are posets having directed sups). Although
Taylor explicitly mentions the possibility of generalizing his results to categories having
filtered colimits as domains, he does not explicitly state the result. The main result of
the current chapter is that, with the “right” choice of a limit concept, Taylor’s result has
indeed a generalization to categories as domains.

In generalizing Taylor’s original proof one has to be more careful about the proper
notion of a limit. Since the dual equivalence of the category of domains and left adjoints
and the category of domains and right adjoints must be replaced by a dual biequivalence
of the respective 2-quasicategories, the proper notion here is that of a bilimit of a pseud-
ofunctor — cf. 3.3.22. The reason is that a biequivalence need not preserve limits but it
always preserves bilimits (of pseudofunctors).

The limit-colimit coincidence is a basic ingredient for solving recursive domain equa-
tions, i.e. equations of the form X = F(X), where F is an endofunctor of a category of
domains. The existence of a solution (determined up to an isomorphism of posets) of a
recursive equation above is guaranteed — in the classical case, when X is a poset — by a
property of the functor F' which is analogous to continuity. We generalize this condition
on F in Section 8.2 and we show that a variety of recursive equations can be solved (up
to an equivalence of categories), e.g. in the 2-quasicategory FILT.

8.1 The Limit-Colimit Coincidence

Recall that:

1. FILT denotes the 2-quasicategory of all categories having small filtered colimits as
0-cells, all finitary functors as 1-cells and all natural transformations as 2-cells.

2. FILT! denotes the 2-quasicategory of all categories having small filtered colimits as
0-cells, all left adjoint functors which have finitary right adjoints as 1-cells and all
natural transformations as 2-cells.

3. FILT" denotes the 2-quasicategory of all categories having small filtered colimits as
0-cells, all finitary right adjoint functors as 1-cells and all natural transformations
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as 2-cells.
The following is rather straightforward:

Lemma 8.1.1 The 2-quasicategory FILT is closed in the 2-quasicategory CAT under bili-
mits.

Notation 8.1.2 Due to Remark 3.3.15 there is a contravariant pseudofunctor
(®, p, 1) : FILT" — FILT'

which is a biequivalence (it is a domain-codomain restriction of the contravariant biequiv-
alence from the proof of Theorem 3.3.14 — thus the same notation). We will use this
pseudofunctor for the rest of this section. O

The following result appears in [Tay87| for categories of posets having directed sups.
We believe, however, that an explicit formulation for categories having filtered colimits is
new.

Theorem 8.1.3 The quasicategory FILT" has cofiltered bilimits.
Proof. Let us fix first the following notation:

e I is a small cofiltered category regarded as a discrete 2-category, D : I — FILT" is
a pseudofunctor, where I is a small cofiltered category.
For an I-morphism v : i — j, let R* : D(i) — D(j) denote the finitary right
adjoint functor D(u). Suppose that D(1;) = R' = 1pg for each i. Let d,, :
R -R* = R"™ foru:1 — j, v:j — k denote the comparison natural
isomorphism for D such that the collection of §’s satisfies the coherence conditions

(8.1)

Since we suppose that D(1;) = 1p(;), the identity coherence conditions are trivial.

Let L" : D(j) — D(i) denote the left adjoint ®(R") for any I-morphism u and let
n* and " denote the unit and the counit of L* 4 R".

e Denote by E : FILT" — FILT the embedding 2-functor. Since E is an inclusion, we
(whenever convenient) omit E for the sake of readability.

Form a bilimit of D in FILT and denote by p : const;, = D the pseudonatural
transformation which forms a bilimit cone. Explicitly, we have finitary functors R; :
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L — D(j) for each I-object j and natural isomorphisms p* : RY - R, = R;, for each
I-morphism u : j; — js. The collection of p"’s is subject to the following coherence
conditions:

p'i : R; = R; is the identity natural transformation for any I-object i (8.2)

for any I-morphisms v : 4 — j,v : j — k. (8.3)

Note that each functor R; is finitary since the bilimit is formed in FILT, and note that
(due to Lemma 8.1.1) a typical L-object is a compatible thread, i.e. a collection (y;, a,),
where y; is an object in D(j) for any I-object j and a,, : R”(y;,) — y;, is an isomorphism
in D(jo) for each I-morphism w : j; — jo, such that the following equations hold:

1,, for any j (8.4)
Owywy = Qo B (ay,) for any wy : j1 — Jo,we 1 Jo — J3 (8.5)

ai;

Due to the definition of a bilimit we have that for any category X having filtered
colimits the quasicategory FILT(X,L) having finitary functors from X to L as objects
and natural transformations between such functors as morphisms is equivalent to the
quasicategory PseudoCone(X, D) having psudonatural transformations from constx to D
as objects and modifications between such pseudonatural transformations as morphisms.
One part of the equivalence is a functor

px : FILT(X,L) — PseudoCone(X, D) (8.

[=2)

)

sending a finitary functor /' : X — L to a pseudonatural transformation px(F) =
(R,;F, p*F) and sending a natural transformation 7 : Fy = F; to a modification px(7)
with the j-th component R;7 : R;F} = R;F,. The functor px will be extensively used
in the sequel.

Claim A. Fach functor R; has a (finitary) left adjoint.

Proof of A. Let us fix an arbitrary I-object ¢ and let us show that R; has a (finitary) left
adjoint. The idea of the proof is as follows: we define a finitary functor F; : D(i) — L
such that there is an idempotent natural transformation F; = F; whose image is the
desired left adjoint of R;.

Since we have an equivalence of categories FILT(D(), L) and PseudoCone(D(3), D) to
define the functor Fj it suffices to define a pseudocone oo = (A;, ") for ED with vertex
D(3).

Let j be an arbitrary object of I. The finitary functor A; : D(i) — D(j) is going
to be a colimit of a filtered diagram D; : D; — FILT(D(i), D(j)), where the auxiliary
category D; is defined as follows:
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Objects are triples (k,u,v) forming a “span”

TTe—

J

in L

Morphisms from (k1, u1,v1) to (ko, us, v2) are those I-morphisms m : ko — k1, such
that us = uy - m and v9 = vy - m.

Using the fact that I is cofiltered, it is easy to show that D, is filtered.
The functor D; : D; — FILT(D(¢), D(j)) is defined as follows:

D; sends an object (k,u,v) to R” - L* and it sends a morphism m : (ky, uy,v1) —
(k2,ug,v2) in D; to

(8.7)

where ¢, ,, is an abbreviated notation of the coherence isomorphism @gm gui :
L™. " = "™ (Use the facts that u; - m = uy and vy - m = vs.)

D; is indeed a functor:
Let my : (kl,ul,vl) — (]CQ,’LLQ,’UQ) and mo (kQ,UQ,UQ) — (kg,U3,’l)3) be Dj'
morphisms. Then due to the definition of D; we have the equality

(8.8)

nm2
\ i Rm2 /
{ }

‘ Pma,uy ‘ ‘ Oma,vg
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Since by the associativity coherence for ¢ (cf. (3.18)) the equality

(8.9)

(8.10)

l |
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Due to the definition of @, m, (see (3.21)), (8.11) equals to

L™m1-m2 gm2

(8.12)

where the last equality holds due to triangle equalities for L™ -+ R™ and L™ - R™2,
due to the associativity coherence for §’s and the fact that d,,} . and 0, m, are mutually
inverse.

It is trivial to show that D; preserves identitites (recall that ®(15) = 1a).

Define A; as a colimit of D;. (This colimit exists, since D; is filtered and colimits
in FILT(D(i), D(j)) are computed pointwise.) Denote by k;(k,u,v) : R" - L* = A; the
colimit morphisms.

It remains to define a natural isomorphism a* : R* - A; == A, for each [-morphism
w : j1 —> jo. Since RY is finitary, the collection of natural transformations R« (k, u,v)
forms a colimit cocone with R* - A;, as a colimit.

Let a® be the unique natural transformation such that the square

RY kK, (kyu,v)

RvY. A,

J1

RY .- Rv. L
dv,w L a¥ (8.13)

Rv™v . L A,

Ko (kyu,w-v)

commutes for any D,-object (k,u,v). (The coherence conditions for §’s assure that mor-
phisms
Kjy (kyu, w - v) - 0y L : RY - R" - L" — A},

form a compatible cocone for FILT(D(i), R”) - Dj,.) To prove that o is an isomorphism,
consider the following functor H" : Djl — Dj25

H" assings a D,-object (k,u,w -v) to each D, -object (k,u,v),

H" is identity on morphisms.
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Since [ is cofiltered, the functor H" is cofinal. It is also clear that the collection of all
morphisms 4, ,,L"* form a natural isomorphism

0 : FILT(D(i), R") - D;, = D;, - H”

Therefore a colimit of FILT(D(¢), R”) - Dj, is isomorphic to a colimit of D;, - H* and
this in turn is isomorphic to a colimit of Dj, via o.

The collection (A;, a") constitutes a pseudonatural transformation from constpg; to
ED: ol is the identity and a%?™' = a%? - R”?>a®! by our definition for any pair of
I-morphisms w : j1 — Jo, Wy : jo — J3.

Let F; : D(i) — L denote the finitary functor which corresponds to (A;, ") under
the equivalence pp; : FILT(D(),L) — Pseudocone(D(7), ED).

Since pp(;) is an equivalence, we have an isomorphism modification A : (4;, ") ~
(R Fy, p*Fy).

We are going to define a natural transformation 7; : 1p; = R; - F; and a natural
transformation ¢; : F; - R; = 1.

Put

" : (8.14)

To define ¢; : F; - R; = 11, we use the equivalence
pL : FILT(L, L) — Pseudocone(L, ED)

It suffices to define a modification (R,;F;R;, p"F;R;) ~ (R;,p") and define ¢; as its
preimage under pr. Since R; is a finitary functor, the cocone formed by x;(k,u,v)R; :
R'L"R; = AjR; is a colimit. First we define 7; as the unique natural transformation
such that the triangle

£ (k,uw)R;

RL'R, ——————

. (kk* / (8.15)
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commutes for any D;-object (k,u,v), where the natural transformation mj;(k,u,v) :
R'L*R; = R; is defined as follows:

(8.16)

We have to verify that m;’s form a compatible cocone for the functor FILT(R;, D(j)) -
D;. Take any D;-morphism m : (ki,u1,v1) — (ka, uz,v2) (i.e. we have that m : ky —
ki,up ki — i, up i kg — i, vt kg — j, V9 i kg —> 7, us = uq - m and vy = vy - m in

I).
By the definition of D, it holds that:

R; L1 lpgy)R™

(8.17)

my;(ke, ug, v) - (FILT(R;, D(j)) - Dj)(m) :
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Due to coherence equalities for p and since u; - m = ug and vy - m = vy, (8.17) equals to:

(8.18)

L™g%“1 R™

L™R™

R, R (8.19)
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Due to a triangle equality for L*™ 4 R“1'™  (8.19) equals to:

(8.20)
P
............................................ g
R™Riy 1p(ky) (8.21)
r
Ry,
P
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But (8.21) equals to

= m]- (kl, U, Ul) (822)

Put

(8.23)

We are going to verify that the collection of natural transformations sgj ) constitutes
a modification from (R,;F;R;, p” F;R;) to (Rj, p") (cf. (3.29) and (3.30)). Since the only
2-cells in I are identitites, the equation (3.30) is trivial and only the equation (3.29) has

to be verified. Thus we have to verify the equality
pv - R“’egjl) = sl(-h) - p"F;R; (8.24)

for any [-morphism w : j; — js.
Let us use the fact that natural transformations of the form

RwAjl Rz . Rwlijl (k, u, ’U)RZ
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constitute a colimit cocone.

p" - Rl - Rk, (ku,v) Ry = @) (8.25)

Since Aj, and (A;,)~! are mutually inverse, (8.25) is equal to:

R; L« RY RY

where the first equality follows from the definition of 7;, and the latter follows from the
definition of my, (k, u, w - v).
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Let us investigate the right hand side of the equality (8.24).

R; L« RY RY

e9) . " FiR; - R A, Ry - R¥kj, (k,u,v) Ry = (8.27)
Ajy
.................. o
Since A is a modification, (8.27) is equal to:
R, Lv R®  Rv
(8.28)
R, L% Rwv
Ajy : m, (k,u,w - v) (8.29)
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We have proved that the equality (8.24) holds.

Due to the equivalence of FILT(L, L) and Pseudocone(L, E D) we have defined a natural
transformation ¢; : F; R; = 1p.

Let us verify the equality R;e; - n;R; = 1pg,.

By definitions we have

R; 1p)

R; 1p@)

Riei - niR; :

where the last equation follows by the definition of m;. Due to coherence conditions for
p the transformation m; (i, 1;, 1;) equals to 1g,.

From (8.30) it follows that the natural transformation ¢;F; - F;n; is an idempotent
natural transformation from F; to F;. Since idempotents split in L, by Lemma 3.2.3 we
conclude that R; has a left adjoint which we denote by L;. This finishes the proof of A.

Without loss of generality we can suppose that L; = ®(R;) for any i. Denote by \* :
L; = L; - L" the isomorphism comparison natural transformation ®(p*) for each u :
i — j. Thus, (L;, A") is the image of (R;, p*) under the contravariant biequivalence ®
and therefore it is a pseudococone in FILT'.

Let us spell out the coherence conditions for \’s:

A =1y. for each I-object i (8.31)

and the equation

(8.32)

holds for each pair of [-morphisms v : 7 — 1, v : k — j.
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Claim B. There is a filtered diagram W : I — FILT(L, L), which assigns a finitary
functor W (i) = L; - R; to each l-object i and a natural transformation W(u) : W (i) =
W (j) defined as

reont | (8.33)

to each I’-morphism u : © — j. The collection of counits ¢; : L; - R; = 11, forms a
filtered colimit cocone for W in FILT (L, L).

Proof of B.: To show that W is indeed a functor, consider [°’-morphisms u : i — 7,
v : 7 — k. Then, by definition,

R'U L’U

(8.35)
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Due to the definition of ¢,, and due to coherence conditions for A (cf. (8.32)), we have
that (8.34) equals to

: W(v-u) (8.36)

To prove that W (1;) = lw) use coherence conditions for p and A and our choice of
gli. This finishes the proof that W is a functor.

To show that the collection of counits &; forms a compatible cocone for W, we are to
prove that for any v : ¢ — j in I°? we have the equality:

gj- W) =g (8.37)

The following equalities hold:

5210))
R Lt
R'u
= R; =g (8.38)
R;
4
D(j)
R;
_________________________ o
_________________________ b

where the first equality holds due to the definition of W (u), the second holds due to the
definition of A* and the third holds due to triangle equalities for L* 4 R*, L; 4 R; and
the fact that p* and (p*) ! are mutually inverse.

We have proved that ¢;’s form a compatible cocone on W.

To prove that €;’s form a colimit cocone, consider another W-compatible cocone formed
by natural transformations 7; : L;R; = F. We are going to define a unique natural
transformation 6 : 1, = F', such that the equation

holds for all I-objects i.
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First, for any I-object j define a natural transformation §Y) : R; = R, - F as follows:

(8.40)

To prove that for any L-object z the collection () : R; = R;F) constitutes a
modification from (R;, p*) to (R,;F, p*”F), it suffices to show that for any I-morphism
w : j1 — jo the equality

pliz) . P = pUF - RvpUL) (8.41)

holds (cf. (3.29) and (3.30)). The following equalities hold:

(8.42)

where the first equality holds due to the definition of #U2) and the second equality holds
due to the assumption that 7;, = 75, - W (u) and the definition of W (u). The right hand
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side of (8.42) equals to (use the definition of A¥):

(8.44)

which equals to p?F - R*0\Y), therefore the equality (8.41) holds and the collection (9¢))
constitutes a modification from (R, p*) to (R, F, pF).
Define 0 : 1;, = F to be the natural transformation corresponding to the modification

(6.
Let us prove that for any I-object 7 we have the equality

It suffices to show that for any I-object j it holds that R;7; = R;0 - Rje;.
Since Rje; is natural, we have

R;0-Rje; = Rje;F' - R;L;R;0 (8.46)
Due to the definition of R;0, the equality
R;L;R;0 = R;L;R;7; - R;L;in;R; (8.47)
holds. Finally, due to naturality of R;e;, the equality
Rje;F - R;L;R;T;, = R;T; - Rje;,L; R; (8.48)
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holds. Putting (8.46), (8.47) and (8.48) together, we obtain that the equality (8.45) holds.

To prove uniqueness of 6, suppose that there is another natural transformation o :
1y, = F fulfilling 0 - ¢; = 7; for all . To show that then neccessarily ¢ = o, it suffices
to prove that the image of Rjo under the adjunction L; 4 R; equals to 7;. This is
straightforward. This finishes the proof of B.

Due to Claim A we already know that we have a pseudocone (R;, p*) with vertex L in
FILT". Our next aim is to prove that it is a bilimit of D.

Claim C. (R;, p") is a bilimit of D.

Proof of C. Let X be an arbitrary category having filtered colimits. We are going to
show that the categories FILT"(X, L) and PseudoCone (X, D) are equivalent.

Suppose that (A;, ") is an arbitrary pseudocone for D in FILT" with vertex X, that
is, we have finitary functors A; : X — D(j), finitary adjunctions B; 4 A; with units
n; and counits e;. Morover, we have natural isomorphisms o” : R* - A;, = A,, and
B* : Bj, = L" - B;, for each [-morphism w : j; — j, and these isomorphisms satisfy
the appropriate coherence conditions.

Since the categories FILT(X, L) and PseudoCone(X, D) are equivalent, there is finitary
functor F': X — L and an isomorphism modification II : (4;, a®) ~ (R, - F, p*F).

Analogously, since the categories FILT (L, X) and PseudoCocone(® - D, X) are equiva-
lent, there is finitary functor ' : L — X and an isomorphism modification X : (B;, %) ~»
(G- Lj,G\").

We are going to prove that G < F. To define the unit n : 1, = F - G, use Claim
B:¢;: L;R; = 1y, is a colimit cocone. Let 1 be the unique natural transformation such
that

(8.49)

for each j.
To define the counit € : G- FF = 1x, use the fact that GF is a filtered colimit
with a colimit cocone formed by Ge;F' : GL;R;FF = GF. Let € be the unique natural
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transformation such that the equality

(8.50)

holds for each j.

Let us verify that Fe - nF' = 1p. Due to definition of n it suffices to show that
Fe -nF -g;F = ¢;F for all j.

Due to (8.49) we have

(8.51)

(8.52)

where the last equation holds due to the fact that ¥~ and ¥ are mutually inverse, due to
triangle equality for B; + A;, and due to the fact that II™! and IT are mutually inverse.
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Analogously, to verify the triangle equality eG - Gn = 1g, it suffices to show that
eG - Gn - Gej = Ge; for all j.
Due to (8.49) we have:

(8.53)

(8.54)

where the last equality holds due to the fact that II=! and II are mutually inverse, due
to triangle equality for B; 4 A; and the fact that ©=! and ¥ are mutually inverse. The
proof of Claim C is finished. O

As a corollary of 8.1.3 we obtain the following result (cf. [Ad97], Theorem 3):

Corollary 8.1.4 The 2-quasicategories Ro-ACC", GDOM" and SC" are closed under cofil-
tered bilimits in FILT".

Proof. We keep the notation of the proof of Theorem 8.1.3.

1. Np-ACC": Suppose all categories D(i) are finitely accessible. We have to show that the
category L is finitely accessible. Let K denote the full subcategory of L defined by objects
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of the form L;(p) with p a D(i)g,-object for all i. The category K is small since I is a
small category and each D(i)z, is a small category. Moreover, each K-object is finitely
presentable, since each L; has a finitary right adjoint.

To finish the proof it suffices to show that each L-object is a filtered colimit of K-
objects. Let y be an L-object.

Let us prove that the comma category K/y is filtered.

(i) K is non-empty: since I is non-empty there is 7 such that D(z) is finitely accessible.
Therefore the comma category D(i)s,/Ri(y) contains e.g. f : p — R;(y). The
adjoint of f under L; 4 R; is an object of K/y.

(ii) Let fi : Lj,(a) — y and f5 : Lj,(a) — y be a pair of K/y-objects. Then by the
cofilteredness of I there exists an 7 in I and a pair of morphisms v : i — j;, v :
i —> j2. Replace fi : Lj,(a) — y by the isomorphism A\*(a) : L; - L*(a) — L;,(a)
followed by fi;. Analogously, replace f, by the isomorphism A’(b) : L; - LY(b) —
L;,(b) followed by fo. Both L*(a) and L(b) are finitely presentable, since both L*
and L” have finitary right adjoints. We can thus assume without loss of generality
that f; and fo are of the form f; : L;(a) — vy, fo : L;(b) — y, respectively. Denote
by g1 : a — R;(y) and by g, : b — R;(y) the adjoints of f; and f, under L; 4 R;.
Then, since R;(y) is a filtered colimit of its canonical diagram in D(i), there is a
finitely presentable object p and a morphism ¢ : p — R;(y) such that g; factors
as ¢ - gy and g factors as ¢ - g5. The image of g under L; 4 R; provides us with a
morphism f : L;(p) — y which is the desired vertex of a cocone on f; and fs.

(iii) Let f1 : Lj,(a) — y and fo : Lj,(a) — y be a pair of K/y-objects and suppose
that g : fi — fo and h: fi — fy is a parallel pair of K/y-morphisms, i.e. that
g fo= fiand h- fo = fi. Analogously as above we can suppose that j; = js = i.
Denote by g1 : @ — R;(a) and by g5 : b — R;(b) the adjoints of f; and fo under
L; 4 R;. Then, since R;(y) is a filtered colimit of its canonical diagram in D(3),
there is a finitely presentable object p and a morphism ¢ : p — R;(y) such that g;
factors as g - g} and g factors as ¢ - g5. The image of g under L; 1 R; provides us
with a morphism f : L;(p) — y which is the desired vertex of a cocone on f; and

Jo-

To prove that y is a colimit of the canonical forgetful functor from K/y to L, use the
fact that counits of L; 4 R; form a filtered colimit cocone in FILT(L,L). We therefore
have a filtered colimit cocone €;(y) : L; - R;(y) — y in L. Each f : L;(p) — y factors
through some ¢;, since L;(p) is finitely presentable in L and ¢;’s form a filtered colimit
cocone. Now use the fact that each L; - R;(y) is a filtered colimit of L; - Cg,(y), where
Cri(y) denotes the canonical filtered diagram for R;(y) in D(%).

2. GDOM": Suppose that all categories D(i) are generalized domains, i.e. they all are
finitely accessible with initial objects. By 1. we know that L is finitely accessible, it
remains to verify that L has an initial object. This is trivial: take an initial object L in
(any) D(i). Then L;(L) is initial in L.

3. SC": Suppose all categories D(i) are Scott complete categories. We only have to show
that the category L is a Scott complete category. Since by 2. we know that L is a
generalized domain, it remains to verify that L is boundedly cocomplete.
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To prove that L is boundedly cocomplete, consider a non-empty diagram C': C — L
having a compatible cocone. Recall that by Claim B. from the proof of Theorem 8.1.3,
each Cc can be expressed as a filtered colimit, with £;(Cc) : L; - Ri(Cc) — Cc as
the colimit morphisms. Since C' has a compatible cocone, so does each functor R; - C
and hence colim, R;(Cc) exists. L;, being a left adjoint, preserves this colimit, thus
Li(colim, R;(C¢)) = colim. L; - R;(Cc) exists for each i and this collection forms a fil-
tered diagram in L. Since colimits commute with colimits, we have that colim; colim, L; -
R;(C¢) = colim, colim; L; - R;(Cc) = colim, Ce. O

8.2 Solving Recursive Domain Equations

In this section we give sufficient conditions for the existence of a solution of the recursive
equation
X = F(X) (8.55)

where F' is an endo-2-functor on a 2-quasicategory K of domains. We say that a category
K is a solution of the equation (8.55), or that it is a fixed point of F, if it satisfies that
equation up to an equivalence of categories, i.e. if K ~ F(K) holds.

The following theorem generalizes Theorem 2.2.3. Let w denote the first countable
ordinal number and consider w as a category w.r.t. ususal order.

Theorem 8.2.1 Suppose that K is a sub-2-quasicategory of FILT such that K" is closed
under cofiltered bilimits in FILT". Let F : K" — K" be a 2-functor which preserves
cofiltered bilimits. Suppose that R : F(A) — A is a 1-cell in K". Define the cofiltered
diagram D : w? — K" as follows:

D(0)=A, D(n+1) = F(D(n)) for each n € w.

D(1>0)=R:D(1l) — D), D(n+2>n+1) = F(D(n+1 > n)) for each
neEuw.

Then a bilimit of D is a fized point of F'.

Proof. Denote by  a bilimit pseudocone of D with vertex A .

Since F' preserves cofiltered bilimits, F(3) is a bilimit pseudocone on F - D with
vertex F'(A, ). Denote by E the inclusion functor of ({1,2,...},<) in (w,<). Then E
is a cofinal functor and therefore bilimits of D and D - E° are the same. Since F(f) is
a bilimit pseudococone on D - E?  we conclude that the categories A, and F(A,) are
equivalent. O

The above theorem indicates that the preservation of cofiltered bilimits is an important
property.

Here is a “recipe” how to solve a recursive equation: when working in a 2-quasicategory
K of domains, to solve a recursive equation X = F'(X) with a 2-functor ' : K — K, one
has to first switch to a 2-quasicategory K”. Since F' is a 2-functor, it can be restricted to
a 2-functor F" : K" — K" (see 8.2.2). If K" has cofiltered bilimits and if F" preserves
them, then one applies Theorem 8.2.1 to obtain a fixed point of F'.
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Notation 8.2.2 Let K, L be sub-2-quasicategories of FILT, let /' : K — L be a 2-functor.

Recall that K" denotes the sub-2-quasicategory having all finitary right adjoints as
1-cells and that K! denotes the sub-2-quasicategory having left adjoints as 1-cells. Since
F preserves adjunctions, we can define the following 2-functors:

1. F": K" — L" as the domain-codomain restriction of F'.
2. F': K! — L' as the domain-codomain restriction of F.

|

Notation 8.2.3 Let K be a sub-2-quasicategory of FILT. By 3.3.15 we have a contravari-
ant pseudofunctor
((ba%lﬁ) K — Kl

which is a biequivalence (it is a domain-codomain restriction of the contravariant biequiv-
alence from the proof of Theorem 3.3.14).

Let D : I — K" be a pseudofunctor with I a small cofiltered category. Denote
R* = D(u) for each I-morphism u and let L* be a left adjoint of R* with * the counit
of L* 4 R*. Let (R;, p*) be a pseudocone on D with vertex L. Denote by (L;, \V) the
pseudocone which is the image of (R;, p*) under the contravariant biequivalence (®, p, ¥).
Let ¢; denote the counit of L; 4 R;.

Define a filtered diagram Wp : I — K(L,L) as follows: Wp assigns a finitary
functor Wp (i) = L, - R; to each I-object i and it assigns a natural transformation Wp(u) :
Wp(i) = Wp(j) defined as

R\ (8.56)

to each I°’-morphism u : ¢ — j. It can be verified in the same way as in the proof of
Theorem 8.1.3 that Wp is a functor. O

Definition 8.2.4 Let K be a sub-2-quasicategory of FILT. We say that K has locally
determined cofiltered bilimits, provided that (in the notation of 8.2.3) the pseudocone
(R;, p*) is a bilimit pseudocone if and only if ¢; : L; - R; = 1, is a colimit cocone for
Wp.

The above definition is a generalization of the (dual) notion of locally determined
colimits from [Gun92|, p. 325.

Example 8.2.5 From the proof of 8.1.3 it follows that FILT has locally determined cofil-
tered bilimits:



8.2 Solving Recursive Domain Equations 133

Let D : I — FILT" be a pseudofunctor with I a small cofiltered category. Let (R;, p*)
be a pseudocone with vertex L over D in FILT". By Claims B. and C. from the proof
of 81.3, if g : L; - R, => 1, is a colimit cocone for Wp, then (R;, p”) is a bilimit
pseudocone.

Conversely, if (R;, p) is a bilimit pseudocone for D in FILT", we can without loss of
generality, assume that that (R;, p*) is the pseudocone from the proof of 8.1.3. By Claim
B. we conclude that ¢; : L; - R; = 1y, is a colimit cocone for Wp. O

Example 8.2.6 Other examples of 2-quasicategories with locally determined cofiltered
bilimits are: Ny-ACC, GDOM and SC — cf. 8.1.4. O

The following characterization of 2-functors which preserve cofiltered bilimits follows
immediately from Definition 8.2.4:

Theorem 8.2.7 Suppose that K and L are sub-2-quasicategories of FILT with locally de-
termined cofiltered bilimits. Let F' : KT — L™ be a 2-functor and let D : 1 — K" be a
pseudofunctor with I a cofiltered small category. Let (R;, p*) be a pseudocone on D and
let Wp : I — K(L, L) denote the filtered diagram from 8.2.3. Then the following are
equivalent:

1. The 2-functor F preserves a bilimit of D.

2. The functor Fy 1 : K(L,L) — L(F (L), F(L)) preserves a colimit of Wp.

Definition 8.2.8 Let F': K — L be a 2-functor. We say that F'is locally finitary, if the
functor F,; : K(a,b) — L(Fa, F'b) is finitary for each pair of 0-cells a, b.

Theorem 8.2.9 Let K and L be sub-2-quasicategories of FILT with locally determined
cofiltered bilimits. If F' : K — L s a locally finitary 2-functor, then F" : KT — L7
preserves cofiltered bilimits. Consequently, F' has a least fized point.

Proof. Immediate from 8.2.7 and 8.2.1. O

Examples 8.2.10 The proofs that the following 2-functors are locally finitary are given
in [Ad97]:

1. Product with a fized object, i.e. a 2-functor: - x K : K — K where K is a fixed
0-cell in K and K is any sub-2-quasicategory of FILT closed under products with K.

2. Binary Product, i.e. a 2-functor: _ x _ : K x K — K where K is any sub-2-
quasicategory of FILT closed under products in K.

3. Functor space, i.e. a 2-functor: [_,_] : K* x K — K where K is any cartesian
closed sub-2-quasicategory of FILT and K* denotes the 2-quasicategory with all 1-
cells reversed (but the 2-cells are not reversed).
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By Theorem 8.2.9 we conclude that each of the above 2-functors preserves cofiltered
bilimits whenever K has locally determined cofiltered bilimits. O

It is trivial that also the following “abstract constructors” are locally finitary:

Lemma 8.2.11 Let K be a sub-2-quasicategory of FILT. Then the following 2-functors
are locally finitary:

1. Diagonal 2-functor: A : K — K x K.
2. Tupling 2-functor: [A,_] : K — K, where A is a small category and where K is

closed in CAT under cotensors with A.

We can therefore conclude that recursive equations X = F(X) formed using 2-functors
from Examples 8.2.10 and Lemma 8.2.11 have least solutions.
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