Functions of several variables. Extremes

1) Classify all critical points of the given function:
a) $f(x, y)=x^{3}+y^{3}-3 x^{2}-3 y^{2}-9 x$;
b) $f(x, y)=y \cos x$;
c) $f(x, y)=x y e^{-\frac{x^{2}+y^{2}}{2}}$;
d) $f(x, y, z)=x+\frac{y^{2}}{4 x}+\frac{z^{2}}{y}+\frac{2}{z}$, where $x>0, y>0, z>0$;
e) $f(x, y)=x^{2}-x y^{2}+x^{2} y$.
2) Use the method of Lagrange multipliers to find all points on the plane $x-2 y+3 z=0$ closest to the point $(0,1,1)$.
3) Use the method of Lagrange multipliers to find all points on the surface $z^{2}=x^{2}+y^{2}$ that are closest to the point $(4,2,0)$
4) Find the points of global minimum and maximum of the given function f on the given set M;
a) $f(x, y)=x^{2}+y^{2}-2 x, M$ is the triangle with vertices at $(2,0),(0,2),(0,-2)$;
b) $f(x, y)=x^{2}-y^{2}, M=\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2} \leq 1\right\}$;
c) $f(x, y)=x y^{2}, M=\left\{(x, y) \in \mathbf{R}^{2}: x \geq 0, y \geq 0, x^{2}+y^{2} \leq 3\right\}$.
5) Find the dimensions of the parallelepiped with maximal volume that lies in the first octant and has three sides on the planes $x=0, y=0, z=0$, and one vertex on the plane $x+2 y+3 z=6$.
