Sample questions for Final Exam

In the final exam you will be asked to solve six questions.
Sample questions are of the following type (see also Practice 1-6).

1) For the following function f find the domain $D(f)$ and limits at boundary points.
$f(x)=\frac{e^{x}-1}{\sqrt{x^{2}-x}}$
2) Find the tangent line and the orthogonal line to the graph of $f(x)=(\cos x)^{\sin (\pi x)}+2 x$ at $a=0$.
3) Find the Taylor polynomial of second degree at $a=1$ for the function $f(x)=e^{\frac{x}{x+1}}$.
4) Write the definition of increasing function f on an interval $[a, b]$. For $f(x)=\ln \left|\frac{x-1}{x+1}\right|$ find intervals where the function is increasing, decreasing, loc.max. and loc.min.
5) Evaluate the integral $\int_{0}^{1}(2 x-1) \sin (\pi x) d x$ (if it converges).
6) Evaluate if the following integral is convergent $\int_{0}^{\infty} \frac{1}{x^{2}} e^{-\frac{1}{x}} d x$.
7) Find the area of the finite region of the plane bounded by the graphs of $f(x)=\sqrt{2-x}$, $g(x)=\sqrt{x}, h(x)=0$.
8) Evaluate $\int \frac{5(\sin (x)+2) \cos x}{(\sin (x)+1)\left(5-\cos ^{2}(x)\right)} d x$.
9) After determining maximal intervals where the function is increasing (decreasing), local maximum, minimum, maximal intervals where the function is concave up (down) and inflexion points, graph the function $f(x)=|x| e^{x}$.
10) Find maximal intervals where the function is concave up and concave down and inflexion points for $f(x)=x \ln ^{2} x$.
11) Write the definition of continuous function at the point a. Discuss the continuity of the following function as c obtains all possible real values
$f(x)=\left\{\begin{aligned} \sin x, & x<\frac{\pi}{2} ; \\ c x, & x \geq \frac{\pi}{2} .\end{aligned}\right.$
12) Given $f(x)=\frac{1}{x^{2}+K}$ find all possible K such that f is continuous on the interval $(0,4)$.
13) Write the definition of derivative of a function f at a. Discuss the differentiability of

$$
f(x)=\left\{\begin{aligned}
\frac{\sin x}{x}, & x \neq 0 \\
1, & x=0
\end{aligned}\right.
$$

14) For the following power series, find the radius of convergence and determine the exact interval of convergence
$\sum_{k=0}^{\infty} \frac{2^{k}+1}{k!}(x+2)^{k}$.
15) Expand the following function into Taylor series (with the given center x_{0}) and find the region of convergence of the series $f(x)=\frac{x-1}{x+1}, \quad x_{0}=3$
16) Discuss for what values of $a \in \mathbb{R}$ the following series is convergent (absolutely convergent) $\sum_{k=0}^{\infty} \frac{k^{3}+2}{(a-1)^{k}}$, explain why.
