Calculus 2-Sample final

1) Find the gradient of f, evaluate the gradient at the given point P, find the rate of change of f at P in the direction of the given vector \mathbf{u}, and the equation of the tangent plane to the graph of f at A.
$f(x, y)=x y+y x^{2}+x^{3}, \quad P(2,0), \quad \mathbf{u}=(-2,-1), \quad A(2,0,8)$.
2) Find the maximum and minimum values of $f(x, y)=x^{2}+y^{2}$ subject to the constraint $x^{2}-2 x+y^{2}-4 y=0$.
3) Use Green's theorem to find the work done by $\mathbf{F}=2 x y^{3} \mathbf{i}+4 x^{2} y^{2} \mathbf{j}$ in moving a particle once counterclockwise around the boundary of the "triangular" region in the first quadrant enclosed by the x-axis, the line $x=1$, and the curve $y=x^{3}$.
4) Evaluate $\int_{C} f d s$, where $f(x, y)=\frac{x+y^{2}}{\sqrt{1+x^{2}}}$ and C is the part of the graph of $y=\frac{x^{2}}{2}$ from $(1,1 / 2)$ to (0,0).
5) Write the statement of Stokes' Theorem.

Verify Stokes' Theorem for the vector field $\mathbf{F}(x, y, z)=<3 y, 4 z,-6 x>$, if the surface S is the part of the paraboloid $z=9-x^{2}-y^{2}$ that lies above the $x y$-plane, oriented upward.
6) For (the appropriate periodic extension of) $f(t)= \begin{cases}t, & t \in[0,1) \\ 1, & t \in[1,2)\end{cases}$
find the sine Fourier series and determine its sum (draw graphs).

