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Multidimensional Calculus. Lectures content. Week 10

22. Tests for alternating series.

Theorem. (Alternating series test or Leibniz test) Let bk ≥ 0 for all k and let {bk} be non-increasing.
The series

∑
(−1)kbk converges if and only if lim

k→∞
(bk) = 0.

Example.
∑ (−1)k

k : bk = 1
k ≥ 0 is decreasing and → 0, hence

∑ (−1)k
k converges (compare with harmonic

series).

23. Absolute convergence of series.

Definition. We say that a series
∑
ak converges absolutely if the series

∑
|ak| converges.

Theorem. If a series
∑
ak converges absolutely, then it also converges and we have

∣∣∣ ∞∑
k=n0

ak

∣∣∣ ≤ ∞∑
k=n0

|ak|.

But not the other way around! Recall that
∑ (−1)k

k converges, but
∑∣∣ (−1)k

k

∣∣ =
∑

1
k =∞.

Definition. We say that a series converges conditionally if it converges, but not absolutely.
Thus there are three possibilities now:
—
∑
ak converges,

∑
|ak| converges: absolute convergence (the second implies the first here)

—
∑
ak converges,

∑
|ak| diverges: conditional convergence

—
∑
ak diverges,

∑
|ak| diverges (the first implies the second)

Example. conditional convergence:
∑ (−1)k

k ; absolute convergence:
∑ (−1)k

k2 ; divergence:
∑

(−1)k.

Example.
∑ sin(k)

2k
: We do not know how to investigate this series directly. Its terms are not non-negative,

therefore the tests won’t work. We can’t use AST, since the series is not alternating. The necessary condition
won’t help either, since ak → 0.
Thus we try the absolute convergence and hope that it will come out true, so that we have some conclusion:∑∣∣ sin(k)

2k

∣∣ =
∑ | sin(k)|

2k
≤
∑

1
2k

, this converges, therefore by comparison test also
∑∣∣ sin(k)

2k

∣∣ converges, hence∑ sin(k)
2k

converges absolutely.

Example.
∑

(−1)k 2k

k3 : absolute:
∑∣∣(−1)k 2k

k3

∣∣ =
∑

2k

k3 , ratio test: ak+1

ak
= 2
(

k
k+1

)3 → 2 = λ > 1,

thus
∑∣∣(−1)k 2k

k3

∣∣ diverges, hence
∑

(−1)k 2k

k3 does not converge absolutely. But we do not know whether it
by itself does converge (then it would be conditional convergence) or not.

However, 2k

k3 →∞, thus ak = (−1)k 2k

k3 6→ 0, so the series diverges.

Theorem. Consider a series
∞∑

k=2n0

ak.

If
∑
ak converges absolutely, then also

∑
a2k and

∑
a2k+1 converge and

∞∑
k=2n0

ak =
∞∑

k=n0

a2k +
∞∑

k=n0

a2k+1.

Not true for conditional convergence, see
∞∑
k=1

(−1)k
k .

Theorem. Consider a series
∞∑

k=n0

ak.

If
∑
ak converges absolutely, then for every choice of signs εk = ±1 also

∑
εkak converges.

If
∑
ak converges conditionally, then there is a choice of signs εk = ±1 such that

∑
εkak =∞.

Definition. Consider a series
∞∑

k=n0

ak.
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By a rearrangement of
∞∑

k=n0

ak we mean any series
∞∑

k=n0

aπ(k), where π is an arbitrary bijective mapping of

{n0, n0 + 1, n0 + 2, . . . } ⊂ ZZ onto {n0, n0 + 1, n0 + 2, . . . }, i.e. π is a permutation of {n0, n0 + 1, n0 + 2, . . . }.

Theorem. Consider a series
∞∑

k=n0

ak.

If
∑
ak converges absolutely, then also all its rearrangements

∑
aπ(k) converge and we have

∞∑
k=n0

aπ(k) =

∞∑
k=n0

ak.

If
∞∑

k=n0

ak converges conditionally, then ∀c ∈ IR∪{±∞} there exists its rearrangement such that
∞∑

k=n0

aπ(k) = c.

24. Sequences and series of functions.

Definition. By a sequence of functions we mean an ordered set
{fk}∞k=n0

= {fn0
, fn0+1, fn0+2, . . . }, where fk are functions.

Remark: Given a sequence of functions {fk}∞k=n0
and x ∈

⋂
D(fk), then {fk(x)} is a standard sequence of

real (complex) numbers.

Definition. Let {fk}k≥n0
, f be functions on a set M .

We say that {fk} converges (pointwise) to f on M , denoted fk → f or f = lim
k→∞

(fk),

if ∀x ∈M : lim
k→∞

(
fk(x)

)
= f(x).

Example. Consider fk(x) = arctan(kx). Then lim
k→∞

(
fk(x)

)
=


0, x = 0;
π
2 , x > 0;

−π2 , x < 0.

Definition. Let {fk}k≥n0 , f be functions on a set M .
We say that {fk} converges uniformly to f on M , denoted fk

→→f ,
if ∀ε > 0∃N0 ∈ IN such that ∀k ≥ N0∀x ∈M : |f(x)− fk(x)| < ε.

Theorem. Let fk
→→f on M .

(i) If all fk are continuous on M , then also f is continuous there.
(ii) If all fk have a derivative on M , then also f has it there and f ′ = lim

k→∞
(f ′k) on M .

(iii) If all fk have antiderivative on M , then also f has it there and
∫ x
x0
f dx = lim

k→∞

(∫ x
x0
fk dx

)
for x0, x ⊆M .

Definition. A series of functions is a symbol
∞∑

k=n0

fk = fn0
+ fn0+1 + fn0+2 + . . . , where fk are functions.

Remark: Given a series of functions
∑
fk and x ∈

⋂
D(fk), then

∑
fk(x) is a standard series of real (complex)

numbers.

Definition. Consider a series of functions
∞∑

k=n0

fk.

The region of convergence of this series is the set
{
x ∈

⋂
D(fk);

∑
fk(x) converges

}
. By defining f(x) =

∞∑
k=n0

fk(x) we then obtain a function f on this set called the sum of the series, denoted
∞∑

k=n0

fk = f .

The region of absolute convergence of this series is the set{
x ∈

⋂
D(fk);

∑
fk(x) converges absolutely

}
.

We say that this series converges uniformly to f on M , denoted
∑
fk
→→f on M , if the sequence of partial

sums
{ N∑
k=n0

fk(x)
}

converges uniformly to f on M .

Theorem. Consider series of functions
∑
fk and

∑
gk.
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If
∞∑

k=n0

fk = f on M and
∞∑

k=n0

gk = g on M , then ∀a, b ∈ IR:
∞∑

k=n0

(afk + bgk) = af + bg on M .

Theorem. (Weierstrass criterion) Let fk for k ≥ n0 be functions on M . Let ak ≥ 0 satisfy ∀x ∈M∀k ≥ n0:
|fk(x)| ≤ ak.
If
∑
ak converges, then

∑
fk converges uniformly on M .

Example.
∑
xk = 1

1−x on (−1, 1), but the convergence is not uniform. It will be uniform if we restrict our
attention to [−%, %] for % ∈ (0, 1).

Theorem. Let
∑
fk
→→f on M .

(i) If all fk are continuous on M , then also f is continuous there.

(ii) If all fk have a derivative on M , then also f has it there and f ′ =
∞∑

k=n0

f ′k on M .

(iii) If all fk have an antiderivative on M , then also f has it there and
∫ x
x0
f dx =

∞∑
k=n0

∫ x
x0
fk dx for x0, x ⊆M .

None of this is true in general for ordinary (pointwise) convergence.

Exercises. Lab 10

- Discuss the converge and absolute convergence of the following series

1)
∞∑
k=1

(−1)k√
k+1

2)
∞∑
k=1

2(−1)k+1

k2+4 3)
∞∑
k=2

(−1)k k−1k+1

4)
∞∑
k=1

(−1)k

2k2 5)
∞∑
k=1

sin k
k2+4 6)

∞∑
k=0

(−1)k
(1+ln k) a ∈ IR

- Use the known criterions to discuss for what values of x ∈ IR the following series is convergent

1)
∞∑
k=0

(−1)k
(1+x2)k

2)
∞∑
k=1

(x+2
x )k 3)

∞∑
k=1

(k+5)4

k! xk
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