Multidimensional Calculus. Lectures content. Week 10

22. Tests for alternating series.

Theorem. (Alternating series test or Leibniz test) Let $b_{k} \geq 0$ for all k and let $\left\{b_{k}\right\}$ be non-increasing. The series $\sum(-1)^{k} b_{k}$ converges if and only if $\lim _{k \rightarrow \infty}\left(b_{k}\right)=0$.

Example. $\sum \frac{(-1)^{k}}{k}: b_{k}=\frac{1}{k} \geq 0$ is decreasing and $\rightarrow 0$, hence $\sum \frac{(-1)^{k}}{k}$ converges (compare with harmonic series).

23. Absolute convergence of series.

Definition. We say that a series $\sum a_{k}$ converges absolutely if the series $\sum\left|a_{k}\right|$ converges
Theorem. If a series $\sum a_{k}$ converges absolutely, then it also converges and we have $\left|\sum_{k=n_{0}}^{\infty} a_{k}\right| \leq \sum_{k=n_{0}}^{\infty}\left|a_{k}\right|$. But not the other way around! Recall that $\sum \frac{(-1)^{k}}{k}$ converges, but $\sum\left|\frac{(-1)^{k}}{k}\right|=\sum \frac{1}{k}=\infty$.

Definition. We say that a series converges conditionally if it converges, but not absolutely.
Thus there are three possibilities now:

- $\sum a_{k}$ converges, $\sum\left|a_{k}\right|$ converges: absolute convergence (the second implies the first here)
$-\sum a_{k}$ converges, $\sum\left|a_{k}\right|$ diverges: conditional convergence
$-\sum a_{k}$ diverges, $\sum\left|a_{k}\right|$ diverges (the first implies the second)
Example. conditional convergence: $\sum \frac{(-1)^{k}}{k} ; \quad$ absolute convergence: $\sum \frac{(-1)^{k}}{k^{2}} ; \quad$ divergence: $\sum(-1)^{k}$.
Example. $\sum \frac{\sin (k)}{2^{k}}$: We do not know how to investigate this series directly. Its terms are not non-negative, therefore the tests won't work. We can't use AST, since the series is not alternating. The necessary condition won't help either, since $a_{k} \rightarrow 0$.
Thus we try the absolute convergence and hope that it will come out true, so that we have some conclusion: $\sum\left|\frac{\sin (k)}{2^{k}}\right|=\sum \frac{|\sin (k)|}{2^{k}} \leq \sum \frac{1}{2^{k}}$, this converges, therefore by comparison test also $\sum\left|\frac{\sin (k)}{2^{k}}\right|$ converges, hence $\sum \frac{\sin (k)}{2^{k}}$ converges absolutely.

Example. $\sum(-1)^{k} \frac{2^{k}}{k^{3}}$: absolute: $\sum\left|(-1)^{k} \frac{2^{k}}{k^{3}}\right|=\sum \frac{2^{k}}{k^{3}}$, ratio test: $\frac{a_{k+1}}{a_{k}}=2\left(\frac{k}{k+1}\right)^{3} \rightarrow 2=\lambda>1$,
thus $\sum\left|(-1)^{k} \frac{2^{k}}{k^{3}}\right|$ diverges, hence $\sum(-1)^{k} \frac{2^{k}}{k^{3}}$ does not converge absolutely. But we do not know whether it by itself does converge (then it would be conditional convergence) or not.
However, $\frac{2^{k}}{k^{3}} \rightarrow \infty$, thus $a_{k}=(-1)^{k} \frac{2^{k}}{k^{3}} \nrightarrow 0$, so the series diverges.
Theorem. Consider a series $\sum_{k=2 n_{0}}^{\infty} a_{k}$.
If $\sum a_{k}$ converges absolutely, then also $\sum a_{2 k}$ and $\sum a_{2 k+1}$ converge and $\sum_{k=2 n_{0}}^{\infty} a_{k}=\sum_{k=n_{0}}^{\infty} a_{2 k}+\sum_{k=n_{0}}^{\infty} a_{2 k+1}$

Not true for conditional convergence, see $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k}$.
Theorem. Consider a series $\sum_{k=n_{0}}^{\infty} a_{k}$.
If $\sum a_{k}$ converges absolutely, then for every choice of signs $\varepsilon_{k}= \pm 1$ also $\sum \varepsilon_{k} a_{k}$ converges.
If $\sum a_{k}$ converges conditionally, then there is a choice of signs $\varepsilon_{k}= \pm 1$ such that $\sum \varepsilon_{k} a_{k}=\infty$.
Definition. Consider a series $\sum_{k=n_{0}}^{\infty} a_{k}$.

By a rearrangement of $\sum_{k=n_{0}}^{\infty} a_{k}$ we mean any series $\sum_{k=n_{0}}^{\infty} a_{\pi(k)}$, where π is an arbitrary bijective mapping of $\left\{n_{0}, n_{0}+1, n_{0}+2, \ldots\right\} \subset \mathbb{Z}$ onto $\left\{n_{0}, n_{0}+1, n_{0}+2, \ldots\right\}$, i.e. π is a permutation of $\left\{n_{0}, n_{0}+1, n_{0}+2, \ldots\right\}$.

Theorem. Consider a series $\sum_{k=n_{0}}^{\infty} a_{k}$.
If $\sum a_{k}$ converges absolutely, then also all its rearrangements $\sum a_{\pi(k)}$ converge and we have $\sum_{k=n_{0}}^{\infty} a_{\pi(k)}=$ $\sum_{k=n_{0}}^{\infty} a_{k}$.
If $\sum_{k=n_{0}}^{\infty} a_{k}$ converges conditionally, then $\forall c \in \mathbb{R} \cup\{ \pm \infty\}$ there exists its rearrangement such that $\sum_{k=n_{0}}^{\infty} a_{\pi(k)}=c$.

24. Sequences and series of functions.

Definition. By a sequence of functions we mean an ordered set
$\left\{f_{k}\right\}_{k=n_{0}}^{\infty}=\left\{f_{n_{0}}, f_{n_{0}+1}, f_{n_{0}+2}, \ldots\right\}$, where f_{k} are functions.
Remark: Given a sequence of functions $\left\{f_{k}\right\}_{k=n_{0}}^{\infty}$ and $x \in \bigcap D\left(f_{k}\right)$, then $\left\{f_{k}(x)\right\}$ is a standard sequence of real (complex) numbers.

Definition. Let $\left\{f_{k}\right\}_{k \geq n_{0}}, f$ be functions on a set M.
We say that $\left\{f_{k}\right\}$ converges (pointwise) to f on M, denoted $f_{k} \rightarrow f$ or $f=\lim _{k \rightarrow \infty}\left(f_{k}\right)$,
if $\forall x \in M: \lim _{k \rightarrow \infty}\left(f_{k}(x)\right)=f(x)$.
Example. Consider $f_{k}(x)=\arctan (k x)$. Then $\lim _{k \rightarrow \infty}\left(f_{k}(x)\right)=\left\{\begin{aligned} 0, & x=0 ; \\ \frac{\pi}{2}, & x>0 ; \\ -\frac{\pi}{2}, & x<0 .\end{aligned}\right.$
Definition. Let $\left\{f_{k}\right\}_{k \geq n_{0}}, f$ be functions on a set M.
We say that $\left\{f_{k}\right\}$ converges uniformly to f on M, denoted $f_{k} \rightrightarrows f$,
if $\forall \varepsilon>0 \exists N_{0} \in \mathbb{N}$ such that $\forall k \geq N_{0} \forall x \in M:\left|f(x)-f_{k}(x)\right|<\varepsilon$.
Theorem. Let $f_{k} \rightrightarrows f$ on M.
(i) If all f_{k} are continuous on M, then also f is continuous there.
(ii) If all f_{k} have a derivative on M, then also f has it there and $f^{\prime}=\lim _{k \rightarrow \infty}\left(f_{k}^{\prime}\right)$ on M.
(iii) If all f_{k} have antiderivative on M, then also f has it there and $\int_{x_{0}}^{x} f d x=\lim _{k \rightarrow \infty}\left(\int_{x_{0}}^{x} f_{k} d x\right)$ for $\overline{x_{0}, x} \subseteq M$.

Definition. A series of functions is a symbol $\sum_{k=n_{0}}^{\infty} f_{k}=f_{n_{0}}+f_{n_{0}+1}+f_{n_{0}+2}+\ldots$, where f_{k} are functions.
Remark: Given a series of functions $\sum f_{k}$ and $x \in \bigcap D\left(f_{k}\right)$, then $\sum f_{k}(x)$ is a standard series of real (complex) numbers.

Definition. Consider a series of functions $\sum_{k=n_{0}}^{\infty} f_{k}$.
The region of convergence of this series is the set $\left\{x \in \bigcap D\left(f_{k}\right) ; \sum f_{k}(x)\right.$ converges $\}$. By defining $f(x)=$ $\sum_{k=n_{0}}^{\infty} f_{k}(x)$ we then obtain a function f on this set called the sum of the series, denoted $\sum_{k=n_{0}}^{\infty} f_{k}=f$.
The region of absolute convergence of this series is the set
$\left\{x \in \bigcap D\left(f_{k}\right) ; \sum f_{k}(x)\right.$ converges absolutely $\}$.
We say that this series converges uniformly to f on M, denoted $\sum f_{k} \vec{\rightarrow} f$ on M, if the sequence of partial sums $\left\{\sum_{k=n_{0}}^{N} f_{k}(x)\right\}$ converges uniformly to f on M.

Theorem. Consider series of functions $\sum f_{k}$ and $\sum g_{k}$.

If $\sum_{k=n_{0}}^{\infty} f_{k}=f$ on M and $\sum_{k=n_{0}}^{\infty} g_{k}=g$ on M, then $\forall a, b \in \mathbb{R}$: $\sum_{k=n_{0}}^{\infty}\left(a f_{k}+b g_{k}\right)=a f+b g$ on M.
Theorem. (Weierstrass criterion) Let f_{k} for $k \geq n_{0}$ be functions on M. Let $a_{k} \geq 0$ satisfy $\forall x \in M \forall k \geq n_{0}$ $\left|f_{k}(x)\right| \leq a_{k}$.
If $\sum a_{k}$ converges, then $\sum f_{k}$ converges uniformly on M.
Example. $\sum x^{k}=\frac{1}{1-x}$ on $(-1,1)$, but the convergence is not uniform. It will be uniform if we restrict our attention to $[-\varrho, \varrho]$ for $\varrho \in(0,1)$.

Theorem. Let $\sum f_{k} \rightrightarrows f$ on M.
(i) If all f_{k} are continuous on M, then also f is continuous there.
(ii) If all f_{k} have a derivative on M, then also f has it there and $f^{\prime}=\sum_{k=n_{0}}^{\infty} f_{k}^{\prime}$ on M.
(iii) If all f_{k} have an antiderivative on M, then also f has it there and $\int_{x_{0}}^{x} f d x=\sum_{k=n_{0}}^{\infty} \int_{x_{0}}^{x} f_{k} d x$ for $\overline{x_{0}, x} \subseteq M$.

None of this is true in general for ordinary (pointwise) convergence.

Exercises. Lab 10

- Discuss the converge and absolute convergence of the following series

1) $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{\sqrt{k+1}}$
2) $\sum_{k=1}^{\infty} \frac{2(-1)^{k+1}}{k^{2}+4}$
3) $\sum_{k=2}^{\infty}(-1)^{k} \frac{k-1}{k+1}$
4) $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{2^{k^{2}}}$
5) $\sum_{k=1}^{\infty} \frac{\sin k}{k^{2}+4}$
6) $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(1+\ln k)} \quad a \in \mathbb{R}$

- Use the known criterions to discuss for what values of $x \in \mathbb{R}$ the following series is convergent

1) $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{\left(1+x^{2}\right)^{k}}$
2) $\sum_{k=1}^{\infty}\left(\frac{x+2}{x}\right)^{k}$
3) $\sum_{k=1}^{\infty} \frac{(k+5)^{4}}{k!} x^{k}$
