Multidimensional Calculus. Lectures content. Week 3

4. Chain rule. Implicit differentiation.

Theorem. Suppose $z=f(x, y)$ is a differentiable function, and suppose $x=g(t)$ and $y=h(t)$ with both g and h differentiable functions of t. Then f is a differentiable function of t and

$$
\frac{d f}{d t}=\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}, \quad \begin{array}{cc}
z \\
\swarrow & \searrow \\
x & y \\
\downarrow & \downarrow \\
t & t
\end{array}
$$

It is convenient to draw a tree diagram to visualize the dependent, intermediate and independent variables.
Example. Given $z=x^{2} y+3 x y^{4}, x=e^{t}, y=\sin t$, find $\frac{d z}{d t}$ and $\left.\frac{d z}{d t}\right|_{t=0}$.
Theorem. The above theorem can be extended to function f of n variables $x_{1}, x_{2}, \ldots, x_{n}$ where each x_{j} is a function of m variables t_{1}, \ldots, t_{m}, then if all partial derivatives $\frac{\partial x_{j}}{\partial t_{i}}$ exist, we have

$$
\frac{\partial f}{\partial t_{i}}=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} \frac{\partial x_{j}}{\partial t_{i}}
$$

for every $i=1, \ldots, m$.
Example. Evaluate $\frac{d w}{d t}$ if $w=f(x, y, z)=x y+z$ and $x=\cos t, y=\sin t, z=t$. (The function f is consider over a path, indeed $x=\cos t, y=\sin t, z=t$ are the parametric equations of a helix in \mathbb{R}^{3}). In this case using the tree diagram

$$
\begin{array}{rrr}
& \begin{array}{c}
w \\
\\
\swarrow \\
\\
x
\end{array} & y \\
\downarrow & z \\
\downarrow & \downarrow & \downarrow \\
t & t & t
\end{array} \quad \text { we get } \quad \frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t} .
$$

Example. Given $z=e^{x} \sin y, x=s t^{2}, y=s^{2} t$, evaluate $\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial s}$. From

we get $\quad \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}, \quad \frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$.

Example. Given $w=x+2 y+z^{2}, x=\frac{r}{s}, y=r^{2} \ln s, z=2 r$, find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ using the tree diagram

Theorem. Implicit Function Theorem. $F(x, y)=0$ defines implicitly y as a function of x near a point (a, b) if $F(a, b)=0, F_{y}(a, b) \neq 0$ and F_{x} and F_{y} are continuous on a disk containing (a, b).

Theorem. If $F(x, y)=0$ defines implicitly y as a function of x then the derivative of y with respect to x can be evaluated by

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}} .
$$

Proof. (Use chain rule.)
Example. Given $F(x, y)=x^{2}+\sin y-2 y$ use implicit differentiation to find $\frac{d y}{d x}$ near $(0,0)$. (Prove first that $F(x, y)=0$ defines implicitly y as a function of x near $(0,0)$.)

5. Directional derivative. Gradient.

If $z=f(x, y)$, the partial derivatives f_{x}, f_{y} represent the rate of change of f in the direction of the x and y axis. We may wish to find the rate of change of z in any direction. Remember that given any vector \mathbf{v} its direction is determine by the unit vector $\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}$.
Definition. The directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of the unit vector $\mathbf{u}=(a, b)$ is

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

if the limit exists.
Theorem. If f is a differentiable function of x and y, then f has directional derivative in the direction of any unit vector $\mathbf{u}=(a, b)$ and

$$
D_{\mathbf{u}} f(x, y)=f_{x}(x, y) a+f_{y}(x, y) b
$$

Proof. (Use chain rule.)
Example. Find the directional derivative of $f(x, y)=x^{3} y^{4}$ at $P(6,-1)$ in the direction of $\mathbf{v}=<2,5>=2 \mathbf{i}+5 \mathbf{j}$.
Definition. Given $f(x, y)$ we call gradient of f the vector function $\nabla f=<f_{x}, f_{y}>=$ $\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}$.
Example. Given $f(x, y)=\cos x-e^{x y^{2}}$, evaluate ∇f and $\nabla f(0,1)$.
Remark. $D_{\mathbf{u}} f(x, y)=\nabla f \cdot \mathbf{u}$ (.inner product of two vectors).
Remark. Due to the fact that $\mathbf{v} \cdot \mathbf{u}=\|\mathbf{v}\| \cdot\|\mathbf{u}\| \cos \theta$, where θ is the angle between \mathbf{v} and \mathbf{u}, we have that $D_{\mathbf{u}}$ is maximal when \mathbf{u} and ∇f are parallel. Thus:
$f(x, y)$ increases most rapidly in the direction of ∇f (at every point).
Any direction $\mathbf{u} \perp$ to ∇f is a direction of no change in f, so ∇f is \perp to level curves.
The direction of $-\nabla f$ is the direction of minimal change of rate of f.
Remark. In three dimensions: $\nabla f=<f_{x}, f_{y}, f_{z}>, \nabla f$ is (still) the direction of maximal rate of increase, $\nabla f($ if $\neq 0)$ is orthogonal to level surfaces, so it is \perp to the tangent plane to the level surface.
Example. Find the tangent plane to the circular paraboloid $x^{2}+y^{2}+z-9=0$ at $P(1,2,4)$.
(Notice that if $f(x, y, z)=x^{2}+y^{2}+z-9$ the paraboloid is the level surface $f=0$).
For the general case of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the definition and theorems concerning Directional derivatives are the following.
Definition. The directional derivative of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ in the direction of a unit vector \mathbf{u} at the point \mathbf{x} is

$$
D_{\mathbf{u}} f(\mathbf{x})=\lim _{h \rightarrow 0} \frac{f(\mathbf{x}+h \mathbf{u})-f(\mathbf{x})}{h}
$$

Theorem. If \mathbf{x} is a point such that the gradient of $f, \nabla f=<\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}>$ is a continuous vector function at \mathbf{x}, then $D_{\mathbf{u}} f(\mathbf{x})=\nabla f(\mathbf{x}) \cdot \mathbf{u}$.

Definition. The linearization of a function $f(\mathbf{x})$ at a point \mathbf{a} is:

$$
f(\mathbf{x}) \approx f(\mathbf{a})+\left.\nabla f\right|_{\mathbf{a}} \cdot(\mathbf{x}-\mathbf{a})
$$

Exercises. Lab 3

1) $z=x \sqrt{1+y^{2}}, x=t e^{2 t}, y=e^{-t}$, find $\frac{d z}{d t}$.
2) $z=\sin x \cos y, x=(s-t)^{2}, y=s^{2}-t^{2}$, find $\frac{\partial z}{\partial s} \frac{\partial z}{\partial t}$.
3) $u=x y+y z+z x, x=s t, y=e^{s t}, z=t^{2}$, find $\frac{\partial u}{\partial s} \frac{\partial u}{\partial t}$.
4) Verify that $2 y^{2}+\sqrt[3]{x y}=3 x^{2}+18$ defines y as a function of x around $P(-2,4)$, find $\left.\frac{d y}{d x}\right|_{P}$.
5) Find $\left.\nabla f\right|_{P}$ for $f(x, y)=\ln \left(x^{2}+y^{2}\right), P(1,1)$.
6) Find $\left.\nabla f\right|_{P}$ for $f(x, y, z)=e^{x+y} \cos z+(y+1) \sin x, P(0,0 \pi / 2)$.
7) Find $\left.D_{\mathbf{u}} f\right|_{P}$ for $f(x, y, z)=3 e^{x} \cos (y z), P(0,0,0), \mathbf{v}=<2,1,-2>$.
8) Find $\left.D_{\mathbf{u}} f\right|_{P}$ for $f(x, y, z)=x^{2}+2 y^{2}-3 z^{2}, P(0,0,0), \mathbf{v}=<1,1,1>$.
9) Find the maximal and minimal rate of change of $f(x, y)=x e^{-y}+3 y$ at $P(1,0)$ in the direction in which they occur.
10) Find the maximal and minimal rate of change of $f(x, y, z)=\frac{x}{y}+\frac{y}{z}$ at $P(4,2,1)$ in the direction in which they occur.
