
Multidimensional Calculus. Lectures content. Week 3

4. Chain rule. Implicit differentiation.

Theorem. Suppose z = f(x, y) is a differentiable function, and suppose x = g(t) and
y = h(t) with both g and h differentiable functions of t. Then f is a differentiable function
of t and

df

dt
=
dz

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
,

z
↙↘
x y
↓ ↓
t t

It is convenient to draw a tree diagram to visualize the dependent, intermediate and inde-
pendent variables.

Example. Given z = x2y + 3xy4, x = et, y = sin t, find dz
dt and dz

dt

∣∣
t=0

.

Theorem. The above theorem can be extended to function f of n variables x1, x2, . . . , xn
where each xj is a function of m variables t1, . . . , tm, then if all partial derivatives

∂xj

∂ti
exist,

we have
∂f

∂ti
=

n∑
j=1

∂f

∂xj

∂xj
∂ti

for every i = 1, . . . ,m.

Example. Evaluate dw
dt if w = f(x, y, z) = xy + z and x = cos t, y = sin t, z = t. (The

function f is consider over a path, indeed x = cos t, y = sin t, z = t are the parametric
equations of a helix in IR3). In this case using the tree diagram

w
↙↓↘
x y z
↓ ↓ ↓
t t t

we get
dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt
.

Example. Given z = ex sin y, x = st2, y = s2t, evaluate ∂z
∂t and ∂z

∂s . From

z
↙↘
x y
↙↘ ↙↘
s t s t

we get
∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t
,

∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s
.

Example. Given w = x+ 2y+ z2, x = r
s , y = r2 ln s, z = 2r, find ∂w

∂r and ∂w
∂s using the tree

diagram
w
↙↓↘

x y z
↙↘↙↘↙↘
s r s r s r

.

Theorem. Implicit Function Theorem. F (x, y) = 0 defines implicitly y as a function of
x near a point (a, b) if F (a, b) = 0, Fy(a, b) 6= 0 and Fx and Fy are continuous on a disk
containing (a, b).
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Theorem. If F (x, y) = 0 defines implicitly y as a function of x then the derivative of y with
respect to x can be evaluated by

dy

dx
= −Fx

Fy
.

Proof. (Use chain rule.)
Example. Given F (x, y) = x2 + sin y − 2y use implicit differentiation to find dy

dx near (0, 0).
(Prove first that F (x, y) = 0 defines implicitly y as a function of x near (0, 0).)

5. Directional derivative. Gradient.

If z = f(x, y), the partial derivatives fx, fy represent the rate of change of f in the direction
of the x and y axis. We may wish to find the rate of change of z in any direction. Remember
that given any vector v its direction is determine by the unit vector u = v

‖v‖ .

Definition. The directional derivative of f at (x0, y0) in the direction of the unit vector
u = (a, b) is

Duf(x0, y0) = lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h

if the limit exists.
Theorem. If f is a differentiable function of x and y, then f has directional derivative in
the direction of any unit vector u = (a, b) and

Duf(x, y) = fx(x, y)a+ fy(x, y)b.

Proof. (Use chain rule.)
Example. Find the directional derivative of f(x, y) = x3y4 at P (6,−1) in the direction of
v =< 2, 5 >= 2i + 5j.

Definition. Given f(x, y) we call gradient of f the vector function ∇f =< fx, fy >=
∂f
∂x i + ∂f

∂y j.

Example. Given f(x, y) = cosx− exy2

, evaluate ∇f and ∇f (0, 1).

Remark. Duf(x, y) = ∇f · u (· inner product of two vectors).
Remark. Due to the fact that v ·u = ‖v‖ · ‖u‖ cos θ, where θ is the angle between v and u,
we have that Du is maximal when u and ∇f are parallel. Thus:
f(x, y) increases most rapidly in the direction of ∇f (at every point).
Any direction u ⊥ to ∇f is a direction of no change in f , so ∇f is ⊥ to level curves.
The direction of −∇f is the direction of minimal change of rate of f .
Remark. In three dimensions: ∇f =< fx, fy, fz >, ∇f is (still) the direction of maximal
rate of increase, ∇f (if 6= 0) is orthogonal to level surfaces, so it is ⊥ to the tangent plane to
the level surface.
Example. Find the tangent plane to the circular paraboloid x2 +y2 +z−9 = 0 at P (1, 2, 4).
(Notice that if f(x, y, z) = x2 + y2 + z − 9 the paraboloid is the level surface f = 0).

For the general case of a function f : IRn → IR, the definition and theorems concerning
Directional derivatives are the following.
Definition. The directional derivative of a function f : IRn → IR in the direction of a unit
vector u at the point x is

Duf(x) = lim
h→0

f(x + hu)− f(x)

h
.

Theorem. If x is a point such that the gradient of f , ∇f =< ∂f
∂x1

, . . . , ∂f
∂xn

> is a continuous
vector function at x, then Duf(x) = ∇f(x) · u.
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Definition. The linearization of a function f(x) at a point a is:

f(x) ≈ f(a) + ∇f |a · (x− a).

Exercises. Lab 3

1) z = x
√

1 + y2, x = te2t, y = e−t, find dz
dt .

2) z = sinx cos y, x = (s− t)2, y = s2 − t2, find ∂z
∂s

∂z
∂t .

3) u = xy + yz + zx, x = st, y = est, z = t2, find ∂u
∂s

∂u
∂t .

4) Verify that 2y2 + 3
√
xy = 3x2 + 18 defines y as a function of x around P (−2, 4), find dy

dx

∣∣
P

.

5) Find ∇f
∣∣
P

for f(x, y) = ln(x2 + y2), P (1, 1).

6) Find ∇f
∣∣
P

for f(x, y, z) = ex+y cos z + (y + 1) sinx, P (0, 0π/2).

7) Find Duf
∣∣
P

for f(x, y, z) = 3ex cos(yz), P (0, 0, 0), v =< 2, 1,−2 >.

8) Find Duf
∣∣
P

for f(x, y, z) = x2 + 2y2 − 3z2, P (0, 0, 0), v =< 1, 1, 1 >.

9) Find the maximal and minimal rate of change of f(x, y) = xe−y+3y at P (1, 0) in the direction
in which they occur.

10) Find the maximal and minimal rate of change of f(x, y, z) = x
y + y

z at P (4, 2, 1) in the
direction in which they occur.
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