Multidimensional Calculus. Lectures content. Week 3

4. Chain rule. Implicit differentiation.

Theorem. Suppose z = f(x, y) is a differentiable function, and suppose x = g(t) and y = h(t) with both g and h differentiable functions of t. Then f is a differentiable function of t and

$$\frac{df}{dt} = \frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}, \qquad \begin{array}{c}z\\ \swarrow & \searrow\\ x & y\\ \downarrow & \downarrow\\ t & t\end{array}$$

It is convenient to draw a tree diagram to visualize the dependent, intermediate and independent variables.

Example. Given $z = x^2y + 3xy^4$, $x = e^t$, $y = \sin t$, find $\frac{dz}{dt}$ and $\frac{dz}{dt}\Big|_{t=0}$.

Theorem. The above theorem can be extended to function f of n variables x_1, x_2, \ldots, x_n where each x_j is a function of m variables t_1, \ldots, t_m , then if all partial derivatives $\frac{\partial x_j}{\partial t_i}$ exist, we have

$$\frac{\partial f}{\partial t_i} = \sum_{j=1}^n \frac{\partial f}{\partial x_j} \frac{\partial x_j}{\partial t_i}$$

for every $i = 1, \ldots, m$.

Example. Evaluate $\frac{dw}{dt}$ if w = f(x, y, z) = xy + z and $x = \cos t$, $y = \sin t$, z = t. (The function f is consider over a path, indeed $x = \cos t$, $y = \sin t$, z = t are the parametric equations of a helix in \mathbb{R}^3). In this case using the tree diagram

$$\begin{array}{ccc}
w \\
\swarrow \downarrow \searrow \\
x & y & z \\
\downarrow \downarrow \downarrow \\
t & t & t
\end{array} \quad \text{we get} \qquad \frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}.$$

Example. Given $z = e^x \sin y$, $x = st^2$, $y = s^2 t$, evaluate $\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial s}$. From

Example. Given $w = x + 2y + z^2$, $x = \frac{r}{s}$, $y = r^2 \ln s$, z = 2r, find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ using the tree diagram

Theorem. Implicit Function Theorem. F(x,y) = 0 defines implicitly y as a function of x near a point (a,b) if F(a,b) = 0, $F_y(a,b) \neq 0$ and F_x and F_y are continuous on a disk containing (a,b).

Theorem. If F(x, y) = 0 defines implicitly y as a function of x then the derivative of y with respect to x can be evaluated by

$$\frac{dy}{dx} = -\frac{F_x}{F_y}$$

Proof. (Use chain rule.)

Example. Given $F(x, y) = x^2 + \sin y - 2y$ use implicit differentiation to find $\frac{dy}{dx}$ near (0, 0). (Prove first that F(x, y) = 0 defines implicitly y as a function of x near (0, 0).)

5. Directional derivative. Gradient.

If z = f(x, y), the partial derivatives f_x , f_y represent the rate of change of f in the direction of the x and y axis. We may wish to find the rate of change of z in any direction. Remember that given any vector \mathbf{v} its direction is determine by the unit vector $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$.

Definition. The directional derivative of f at (x_0, y_0) in the direction of the unit vector $\mathbf{u} = (a, b)$ is

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if the limit exists.

Theorem. If f is a differentiable function of x and y, then f has directional derivative in the direction of any unit vector $\mathbf{u} = (a, b)$ and

$$D_{\mathbf{u}}f(x,y) = f_x(x,y)a + f_y(x,y)b.$$

Proof. (Use chain rule.)

Example. Find the directional derivative of $f(x, y) = x^3 y^4$ at P(6, -1) in the direction of $\mathbf{v} = \langle 2, 5 \rangle = 2\mathbf{i} + 5\mathbf{j}$.

Definition. Given f(x, y) we call gradient of f the vector function $\nabla f = \langle f_x, f_y \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$.

Example. Given $f(x, y) = \cos x - e^{xy^2}$, evaluate ∇f and $\nabla f(0, 1)$.

Remark. $D_{\mathbf{u}}f(x,y) = \nabla f \cdot \mathbf{u}$ (\cdot inner product of two vectors).

Remark. Due to the fact that $\mathbf{v} \cdot \mathbf{u} = \|\mathbf{v}\| \cdot \|\mathbf{u}\| \cos \theta$, where θ is the angle between \mathbf{v} and \mathbf{u} , we have that $D_{\mathbf{u}}$ is maximal when \mathbf{u} and ∇f are parallel. Thus:

f(x, y) increases most rapidly in the direction of ∇f (at every point).

Any direction $\mathbf{u} \perp$ to ∇f is a direction of no change in f, so ∇f is \perp to level curves.

The direction of $-\nabla f$ is the direction of minimal change of rate of f.

Remark. In three dimensions: $\nabla f = \langle f_x, f_y, f_z \rangle$, ∇f is (still) the direction of maximal rate of increase, ∇f (if $\neq 0$) is orthogonal to level surfaces, so it is \perp to the tangent plane to the level surface.

Example. Find the tangent plane to the circular paraboloid $x^2 + y^2 + z - 9 = 0$ at P(1, 2, 4). (Notice that if $f(x, y, z) = x^2 + y^2 + z - 9$ the paraboloid is the level surface f = 0).

For the general case of a function $f : \mathbb{R}^n \to \mathbb{R}$, the definition and theorems concerning Directional derivatives are the following.

Definition. The directional derivative of a function $f : \mathbb{R}^n \to \mathbb{R}$ in the direction of a unit vector **u** at the point **x** is

$$D_{\mathbf{u}}f(\mathbf{x}) = \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{u}) - f(\mathbf{x})}{h}.$$

Theorem. If **x** is a point such that the gradient of f, $\nabla f = \langle \frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n} \rangle$ is a continuous vector function at **x**, then $D_{\mathbf{u}}f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{u}$.

Definition. The linearization of a function $f(\mathbf{x})$ at a point **a** is:

$$f(\mathbf{x}) \approx f(\mathbf{a}) + \nabla f|_{\mathbf{a}} \cdot (\mathbf{x} - \mathbf{a}).$$

Exercises. Lab 3

- 1) $z = x\sqrt{1+y^2}, x = te^{2t}, y = e^{-t}$, find $\frac{dz}{dt}$.
- 2) $z = \sin x \cos y, x = (s-t)^2, y = s^2 t^2, \text{ find } \frac{\partial z}{\partial s} \frac{\partial z}{\partial t}.$
- **3)** u = xy + yz + zx, x = st, $y = e^{st}$, $z = t^2$, find $\frac{\partial u}{\partial s} \frac{\partial u}{\partial t}$.
- 4) Verify that $2y^2 + \sqrt[3]{xy} = 3x^2 + 18$ defines y as a function of x around P(-2,4), find $\frac{dy}{dx}\Big|_P$.
- **5)** Find $\nabla f|_P$ for $f(x,y) = \ln(x^2 + y^2)$, P(1,1).
- 6) Find $\nabla f|_P$ for $f(x, y, z) = e^{x+y} \cos z + (y+1) \sin x$, $P(0, 0\pi/2)$.
- 7) Find $D_{\mathbf{u}}f|_{P}$ for $f(x, y, z) = 3e^{x}\cos(yz)$, P(0, 0, 0), $\mathbf{v} = <2, 1, -2>$.
- 8) Find $D_{\mathbf{u}}f|_{P}$ for $f(x, y, z) = x^{2} + 2y^{2} 3z^{2}$, P(0, 0, 0), $\mathbf{v} = <1, 1, 1>$.
- 9) Find the maximal and minimal rate of change of $f(x, y) = xe^{-y} + 3y$ at P(1, 0) in the direction in which they occur.
- 10) Find the maximal and minimal rate of change of $f(x, y, z) = \frac{x}{y} + \frac{y}{z}$ at P(4, 2, 1) in the direction in which they occur.