Czech Technical University in Prague Faculty of Electrical Engineering

Calculus 2-Exercises

Miroslav Korbelár
Paola Vivi

PRAGUE 2016

Authors were supported by the project RPAPS 13101/105/1051603C005.

Exercises. Week 1

1) Find domain of $f(x, y)=\ln \frac{x^{2}+2 x+y^{2}}{x^{2}-2 x+y^{2}}, f(x, y, z)=\arcsin \frac{z}{\sqrt{x^{2}+y^{2}}}$.
2) Find domain of $f(x, y, z)=\frac{x}{|y+z|}, g(x, y)=\sqrt{1-|x|-|y|}$.
3) Graph $f(x, y)=x^{2}+y^{2}, g(x, y)=4 x^{2}+9 y^{2}$, discuss level curves.
4) Verify that $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{y} \sin x}{x}=1, \quad \lim _{(x, y) \rightarrow(1,0)} \frac{x \sin y}{x^{2}+y}=0, \quad \lim _{(x, y, z) \rightarrow(0,0,0)} \frac{2-\sqrt{4-x y z}}{x y z}=\frac{1}{4}$.
5) Approach zero along different paths to prove that the following limits do not exist:
$\quad \lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}}{x^{4}+y^{2}}, \quad \lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-y^{2}}{x^{4}+y^{2}}$,
$\quad \lim _{(x, y) \rightarrow(0,0)} \frac{-x}{\sqrt{x^{2}+y^{2}}}, \quad \quad \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{\sqrt{x^{4}+y^{4}}}$.
6) Use $\varepsilon-\delta$ - proof to verify that
$\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{\sqrt{x^{2}+y^{2}}}=0, \quad \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{\sqrt{x^{2}+y^{2}}}=0, \quad \lim _{(x, y) \rightarrow(0,0)} \frac{2 x y}{\sqrt{x^{2}+y^{2}}}=0$.
7) Use polar coordinates $x=r \cos \vartheta, y=r \sin \vartheta$ to solve the previous limits and the limits discussed during the lecture.
8) Find $c \in \mathbb{R}$ such that $f(x, y)=\left\{\begin{array}{ll}\frac{x y}{|x|+|y|} & (x, y) \neq(0,0) \\ c & (x, y)=(0,0)\end{array}\right.$ is continuous everywhere, prove the existence of the limit at zero with an ε - δ - proof.
9) Get acquainted with the quadric surfaces. Draw the surfaces with the given equation for $a=b=c=1$:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ ellipsoid
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$ hyperboloid of one sheet
$-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ hyperboloid of two sheets
$\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ cone
$\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ elliptic paraboloid
$\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}$ hyperbolic paraboloid
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ elliptic cylinder
$y=a x^{2}$ parabolic cylinder.

Exercises. Week 2

1) Given $f(x, y)=\sinh \sqrt{3 x+4 y}$, find $D(f), f_{x}, f_{y}$.
2) Given $f(x, y, z)=x y^{2} z^{3} \ln (x+2 y+3 z)$, find $D(f), f_{x}, f_{y}, f_{z}$.
3) Given $f(x, y, z)=e^{x y^{2}}+x^{4} y^{4} z^{3}$, verify that $f_{x y}=f_{y x}, f_{x z}=f_{z x}, f_{z y}=f_{y z}$. Find $f_{x y z}$.
4) Is $f(x, y)=x^{2}-y^{2}$ a solution of Laplace equation $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0$?
5) Find linearization of $f(x, y, z)=e^{x}+\cos (y+z)$ at $\left(0, \frac{\pi}{4}, \frac{\pi}{4}\right)$.
6) Given $f(x, y)=\ln (x-3 y)$, find its linearization at $\left(x_{0}, y_{0}\right)=(7,2)$. Use the result to approximate the value of f at $(6.9,2.02)$.
7) Given $f(x, y)=x e^{x y}$, find its linearization at $\left(x_{0}, y_{0}\right)=(6,0)$. Use the result to approximate the value of f at $(5.9,0.01)$.
8) Find tangent plane to $z=\ln (2 x+y)$ at ($-1,3,0$).
9) Given the function $f(x, y)=\left\{\begin{array}{ll}\frac{x^{3} y-x y^{3}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right.$, prove that f is continuous, f_{x} and f_{y} exist everywhere but $f_{x y}(0,0) \neq f_{y x}(0,0)$.

Exercises. Week 3

1) $z=x \sqrt{1+y^{2}}, x=t e^{2 t}, y=e^{-t}$, find $\frac{d z}{d t}$.
2) $z=\sin x \cos y, x=(s-t)^{2}, y=s^{2}-t^{2}$, find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
3) $u=x y+y z+z x, x=s t, y=e^{s t}, z=t^{2}$, find $\frac{\partial u}{\partial s}$ and $\frac{\partial u}{\partial t}$.
4) In a circular cylinder, the radius R is decreasing at a rate of $1.2 \mathrm{~cm} / \mathrm{s}$, while its height h is increasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$. At what rate is the volume of the cylinder changing when $R=80 \mathrm{~cm}$ and $h=150 \mathrm{~cm}$?
5) In a right circular cone, the radius R is increasing at a rate of $1.8 \mathrm{~cm} / \mathrm{s}$, while its height h is decreasing at a rate of $2.5 \mathrm{~cm} / \mathrm{s}$. At what rate are the volume and surface of the cone changing when $R=12 \mathrm{~cm}$ and $h=140 \mathrm{~cm}$?
6) Prove that any function of the form $h(x, t)=f(x+a t)+g(x-a t), a \in \mathbb{R}$, is a solution of the wave equation $\frac{\partial^{2} h}{\partial t^{2}}=a^{2} \frac{\partial^{2} h}{\partial x^{2}}$.
7) Verify that $2 y^{2}+\sqrt[3]{x y}=3 x^{2}+18$ defines y as a function of x around $P=(-2,4)$, find $\left.\frac{d y}{d x}\right|_{P}$
8) Using the implicit function theorem find the tangent line to the given curve at the given point: $x^{2}-x y+y^{4}=3, A=(1,-1) ; \quad x \cos y+y \cos x=1, B=(1,0)$, $2 y^{2}++\sqrt[3]{x y}=3 x^{2}+22, C=(2,4)$.
9) Rewrite the Laplace equation $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0$ using polar coordinates.
10) Solve the partial differential equation $x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=1$ changing it into polar coordinates.
11) Find $\left.\nabla f\right|_{P}$ for $f(x, y)=\ln \left(x^{2}+y^{2}\right), P=(1,1)$.
12) Find $\left.\nabla f\right|_{P}$ for $f(x, y, z)=e^{x+y} \cos z+(y+1) \sin x, P=(0,0 \pi / 2)$.
13) Find $\left.D_{\vec{u}} f\right|_{P}$ for $f(x, y, z)=3 e^{x} \cos (y z), P=(0,0,0), \vec{v}=<2,1,-2>$.
14) Find $\left.D_{\vec{u}} f\right|_{P}$ for $f(x, y, z)=x^{2}+2 y^{2}-3 z^{2}, P=(0,0,0), \vec{v}=<1,1,1>$.
15) Find tangent plane and normal line to the given surface at the given point:
$\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9}=3$ at $P=(-2,1,-3), \quad x^{2}-2 y^{2}-3 z^{2}+x y z=4$ at $A=(3,-2,1), ~$
$z+1=x e^{y} \cos z$ at $B=(1,0,0)$. $z+1=x e^{y} \cos z$ at $B=(1,0,0)$.
16) Prove that the ellipsoid $3 x^{2}+2 y^{2}+z^{2}=9$ and the sphere $x^{2}+y^{2}+z^{2}-8 x-6 y-8 z+24$ are tangent at the point $P=(1,1,2)$.
17) Find the maximal and minimal rate of change of $f(x, y)=x e^{-y}+3 y$ at $P=(1,0)$ in the direction in which they occur.
18) Find the maximal and minimal rate of change of $f(x, y, z)=\frac{x}{y}+\frac{y}{z}$ at $P=(4,2,1)$ in the direction in which they occur.

Exercises. Week 4

1) We recall that the quadratic approximation of a function $f(\vec{x})$, whose partial derivatives of second order are defined and continuous on a neighbourhood of a point \vec{a}, is defined as:

$$
Q(\vec{x})=f(\vec{a})+D f(\vec{a})(\vec{x}-\vec{a})+\frac{1}{2}(\vec{x}-\vec{a})^{T} H f(\vec{a})(\vec{x}-\vec{a})
$$

Find the quadratic approximation of $f(x, y)=\left(1+x^{2}\right) e^{x^{2}+y^{2}}$ at $\vec{a}=(0,0)$, and of $g(x, y)=x e^{y}+1$ at $\vec{a}=(1,0)$.
2) Find local maximum, minimum and saddle points for $f(x, y)=6 x^{2}-2 x^{3}+3 y^{2}+6 x y$.
3) Find local maximum, minimum and saddle points for $f(x, y)=4 x y-x^{4}-y^{4}$.
4) Find local maximum, minimum and saddle points for $f(x, y)=y \sqrt{x}-y^{2}-x+6 y$.
5) Find local maximum, minimum and saddle points for $f(x, y)=\frac{x^{2} y^{2}-8 x+y}{x y}$.
6) Find two numbers $a \leq b$ such that $\int_{a}^{b}\left(6-x-x^{2}\right) d x$ has largest value. Find a geometrical interpretation of the problem.
7) Find absolute max. and min. value of $f(x, y)=x^{2}+x y+y^{2}-6 x+2$ on the rectangle $0 \leq x \leq 5$, $-3 \leq y \leq 0$.
8) Find absolute max. and min. value of $f(x, y)=2 x^{3}+y^{4}$ on the region $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$.
9) Find absolute max. and min. value of $f(x, y)=x^{2}+y^{2}-6 x-4 y+11$ on the region $D=\{(x, y) \in$ $\left.\mathbb{R}^{2}: x^{2}+y^{2}-4 x \leq 5\right\}$.
10) The temperature of a heated plate is given by $T(x, y)=4 x^{2}-4 x y+y^{2}$. A bug walks on the plate along a circle centred at $(0,0)$ with radius 5 . Find the coordinates of the hottest and coldest points reached by the bug and the temperature there.
11) Use Lagrange multipliers to find the maximum and minimum value of $f(x, y, z)=x+3 y+5 z$ on $x^{2}+y^{2}+z^{2}=1$. Then use the geometrical meaning of the gradient and the fact that f is a linear function to find a geometrical solution of the problem.
12) Find the points on $x y^{2}=54$ nearest to the origin.

Exercises. Week 5-6

1) Integrate $f(x, y)=x e^{(x y)}$ over the rectangle $0 \leq x \leq 1,0 \leq y \leq 1$.
2) Integrate $f(x, y)=\frac{1}{x+y}$ over the rectangle $1 \leq x \leq 2,0 \leq y \leq 1$.
3) Sketch the region of integration and evaluate the integral $\int_{0}^{1} \int_{0}^{y^{2}} 3 y^{3} e^{x y} d x d y$.
4) Evaluate $\int_{1}^{\ln 8} \int_{0}^{\ln y} e^{x+y} d x d y$.
5) Evaluate $\iint_{D} \frac{\sin x}{x} d A$, where A is the triangle with vertices $(0,0),(1,0),(1,1)$.
6) Change order of integration in the following integrals

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{\sqrt{x}} f(x, y) d x d y, \quad \int_{0}^{\frac{\pi}{2}} \int_{0}^{\sin x} f(x, y) d y d x \\
\int_{0}^{1} \int_{0}^{x} f(x, y) d y d x+\int_{1}^{2} \int_{0}^{2-x} f(x, y) d y d x
\end{gathered}
$$

7) Change order of integration to evaluate $\int_{0}^{1} \int_{x}^{1} e^{\frac{x}{y}} d x d y$.
8) Change order of integration to evaluate $\int_{0}^{2 \sqrt{\ln 3}} \int_{y / 2}^{\sqrt{\ln 3}} e^{x^{2}} d x d y$.
9) Rewrite the integral, first changing order of integration, then transforming it using polar coordinates

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{2-y} f(x, y) d x d y \\
\int_{0}^{2 a} \int_{\sqrt{2 a x-x^{2}}}^{\sqrt{2 a x}} f(x, y) d y d x, \quad a>0
\end{gathered}
$$

10) Evaluate $\iint_{R} e^{x^{2}+y^{2}} d x d y$, where R is the half disk with center $(0,0)$ and radius 1 lying above the x-axis by changing the integral into polar coordinates.
11) Evaluate with the use of a double integral the area of a disk of radius one.
12) Sketch the curve and find the area of the region the curve encloses (in polar coordinates):

$$
\begin{array}{ccc}
\rho=\sin \vartheta, & \vartheta \in[0, \pi], & \rho=1+\sin \vartheta, \\
\rho=\cos (2 \vartheta), & \vartheta \in[0,2 \pi], \\
& \rho=|\vartheta|+1, & \vartheta \in[-\pi, \pi] .
\end{array}
$$

13) With the use of a double integral in polar coordinates, evaluate the area enclosed by the curves with equation $\rho=3+2 \sin \vartheta, \rho=2$.
14) Use polar coordinates to evaluate:

$$
\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y, \quad \int_{0}^{1} \int_{0}^{x} \frac{x}{x^{2}+y^{2}} d y d x
$$

$$
\begin{gathered}
\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} \frac{x^{2}-y^{2}}{\sqrt{x^{2}+y^{2}}} d x d y, \quad \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \arctan \frac{y}{x} d y d x \\
\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^{2}}} \frac{1}{1+x^{2}+y^{2}} d x d y
\end{gathered}
$$

15) Find the volume of the solid bounded by $z=0$, and the paraboloid $z=1-x^{2}-y^{2}$.
16) Find the volume of the solid bounded by $z=9$, and the paraboloid $z=x^{2}+y^{2}$.
17) Find the volume of the solid bounded by the paraboloides $z=4-x^{2}-y^{2}$ and $z=3 x^{2}+2+3 y^{2}$.
18) Use polar coordinates to find the volume of a right circular cone with height h and a circular base with radius R.
19) Knowing that the average value of a function f over a region R is by definition

$$
\operatorname{Average}(f(x, y))=\frac{1}{\operatorname{Area}(R)} \iint_{R} f(x, y) d A
$$

find the average value of $f(x, y)=x \cos (x y)$ over the rectangle $R=[0, \pi] \times[0,1]$.
20) Knowing that the mass m and the center of gravity $C=\left(x_{0}, y_{0}\right)$ of a flat object occupying a region of the plane D with density $\rho(x, y)$ are defined by

$$
\begin{gathered}
m=\iint_{D} \rho(x, y) d A \\
x_{0}=\frac{1}{m} \iint_{D} x \rho(x, y) d A, \quad y_{0}=\frac{1}{m} \iint_{D} y \rho(x, y) d A,
\end{gathered}
$$

find the mass and center of gravity of
a) a triangle with vertex at $(0,0),(1,1),(4,0)$ and density $\rho(x, y)=x$,
b) the part of the plane bounded by the parabola $y=9-x^{2}$ and the x-axis, with density $\rho(x, y)=y$.
21) Use a substitution to evaluate $\iint_{R}(x+2 y) \sqrt[3]{x-y} d A$, where R is the closed region bounded by $y=x, y=x-1, x+2 y=0, x+2 y=2$.
22) Use a substitution to evaluate $\int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y}(y-2 x)^{2} d y d x$.
23) Use a substitution to evaluate $\iint_{R}(x+y) \cos (\pi(x-y)) d A$, where $R=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x+y, \quad x \leq 1, \quad 1+y \leq x \leq 2+y\right\}$.
24) Use a substitution to evaluate $\iint_{R} \frac{y}{x} e^{x y} d A$, where R is the closed region bounded by $x y=2$, $x y=4, y=2 x, y=\frac{x}{2}$.
25) Evaluate the integral $\iint_{T} e^{-y^{2}} d A$ over the unbounded region $T=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq y\right\}$.
26) Evaluate the integral $\int_{2}^{\infty} \int_{2}^{y} \frac{1-\ln x}{y^{3}} d A$.

Exercises. Week 7-8

1) Evaluate $\int_{0}^{1} \int_{0}^{\pi} \int_{0}^{\pi} y \sin z d x d y d z$.
2) Evaluate $\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{x} y z d y d z d x$.
3) Sketch the region of integration

$$
\begin{array}{cc}
\int_{0}^{1} \int_{0}^{z} \int_{0}^{y} f d x d y d z, & \int_{0}^{1} \int_{x}^{2 x} \int_{0}^{x+y} f d z d y d x \\
\int_{0}^{\pi} \int_{0}^{2} \int_{0}^{\sqrt{4-z^{2}}} f d x d z d y, & \int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{x} f d y d z d x
\end{array}
$$

4) Sketch the region of integration and evaluate

$$
\int_{0}^{1} \int_{0}^{3-3 x} \int_{0}^{3-3 x-y} d z d y d x, \quad \int_{0}^{\pi} \int_{0}^{\ln (\sin y)} \int_{-\infty}^{z} e^{x} d x d z d y
$$

5) Set up the integral $\iiint_{E} f d V$, using all possible orders of integration, where E is bounded by the surfaces:

$$
\text { a) } x^{2}+z^{2}=4, y=0, y=6, \quad \text { b) } z=0, z=y, x^{2}=1-y, 9 x^{2}+4 y^{2}+z^{2}=1 \text {. }
$$

6) Evaluate $\iiint_{E} e^{x} d V$ where $E=\{(x, y, z), 0 \leq y \leq 1,0 \leq x \leq y, 0 \leq z \leq x+y\}$.
7) Evaluate $\iiint_{E} y d V$ where E is bounded above by the plane $z=x+2 y$, and lies above the region of the $x y$-plane enclosed by the curves $y=x^{2}, y=0, x=1$.
8) Evaluate $\iiint_{E} x y d V$ where E is the tetrahedron with vertex in $(0,0,0),(0,1,0),(1,1,0),(0,1,1)$.
9) Evaluate $\iiint_{E} x d V$ where E is bounded by the paraboloid $x=4 y^{2}+4 z^{2}$ and the plane $x=4$.
10) Use cylindrical coordinates to evaluate $\iiint_{D} x^{2}+y^{2} d V$, where D is the solid bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$, and above by the plane $z=2$.
11) Use spherical coordinates to evaluate $\iiint_{B}\left(x^{2}+y^{2}+z^{2}\right) d V$, where B is the unit ball $x^{2}+y^{2}+z^{2} \leq 1$.
12) Find the volume of the region bounded above by the sphere $z=x^{2}+y^{2}+z^{2}$ and below by the cone $z=\sqrt{x^{2}+y^{2}}$.
13) Find the volume of the solid bounded by the elliptic cylinder $4 x^{2}+z^{2}=4$ and the planes $y=0$, $y=z+2$.
14) Sketch the region of integration and evaluate:

$$
\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{4-r^{2}} r d z d r d \vartheta, \quad \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \rho^{2} \sin \varphi d \rho d \vartheta d \varphi
$$

15) Evaluate $\iiint_{E} x^{2}+y^{2} d V$, where $E=\left\{(x, y, z), x^{2}+y^{2} \leq 4,-1 \leq z \leq 2\right\}$.
16) Evaluate $\iiint_{E_{2}} x^{2} d V$, where E is the region inside the cylinder $x^{2}+y^{2}=1$, bounded above by the cone $z^{2}=4 x^{2}+4 y^{2}$, and below by $z=0$.
17) Evaluate $\iiint_{E} x e^{\left(x^{2}+y^{2}+z^{2}\right)^{2}} d V$, where E is the region bounded by the spheres centred at the origin with radius 1 and 2 .
18) Change the integral to cylindrical coordinates and then evaluate it:

$$
\begin{gathered}
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{2-x^{2}-y^{2}}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} d z d y d z \\
\int_{-1}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{x^{2}+y^{2}}^{\sqrt{x^{2}+y^{2}}} x y z d z d x d y
\end{gathered}
$$

19) Change the integral to spherical coordinates and then evaluate it:

$$
\begin{aligned}
& \int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} z \sqrt{x^{2}+y^{2}+z^{2}} d z d y d z \\
& \int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{18-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) d z d x d y
\end{aligned}
$$

Exercises. Week 9

1) Evaluate the length of the spiral with parametric equation $\vec{\varphi}(t)=<2 \cos t, 2 \sin t, \frac{t}{\pi}>$, with $t \in$ $[0,2 \pi]$.
2) Calculate the length of the cycloid with parametric equation $\vec{\varphi}(t)=<t-\sin t, 1-\cos t>$, with $t \in[0,2 \pi]$.
3) Find the length of the curve $\rho=1+\cos t$, with $t \in[0,2 \pi]$.
4) Evaluate $\int_{C}(x+y) d s$, where C is the circle centred at $(1 / 2,0)$ with radius $1 / 2$.
5) Integrate $f(x, y)=x+y^{2}$ over the line segment from $A=(0,0)$ to $B=(1,1)$.
6) Evaluate $\int_{C} y \sin z d s$, where C is the circular helix with parametric equations $x=\cos t, y=\sin t$, $z=t, 0 \leq t \leq 2 \pi$.
7) Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}=<x^{2}, x y>, C$ is the part of $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$, with $y \geq 0$ positively oriented.
8) Find the work done by the force field $\vec{F}=x \vec{i}+y \vec{j}+(x z-y) \vec{k}$ to move a particle along the curve with parametric equations $\vec{r}(t)=<t^{2}, 2 t, 4 t^{3}>, 0 \leq t \leq 1$, from $A=(0,0,0)$ to $B=(1,2,4)$.
9) Find the work done by the force field $\vec{F}=<x^{2}, y e^{x}>$ to move a particle along the curve $x=y^{2}+1$, from $A=(1,0)$ to $B=(2,1)$.
10) Show that $\vec{F}=<e^{x} \cos y+y z, x z-e^{x} \sin y, x y+z>$ is conservative, then find a potential function and use it to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where C is any path from $A=(1,0,2)$ to $B=(0, \pi, 1)$.
11) Determine if the following vector fields are conservative, and evaluate a potential (if any):

$$
\vec{F}(x, y, z)=<e^{y z}, x z e^{y z}, x y e^{y z}>, \quad \vec{G}(x, y, z)=<1, \sin z, y \cos z>
$$

12) Show that the integral is independent on the path, and evaluate it:

$$
\int_{C} \tan y d x+x \sec ^{2} y d y, \quad C \text { from }(1,0) \text { to }\left(2, \frac{\pi}{4}\right)
$$

13) Given $\vec{F}(x, y)=<x^{2}, y^{2}>$, evaluate $\int_{C} \vec{F} d \vec{r}$, where C is the path on $y=2 x^{2}$ from $(1,2)$ to $(2,8)$. (Use both a direct computation of the line integral, and a potential function of \vec{F}).
14) Given $\vec{F}(x, y)=<\frac{y^{2}}{1+x^{2}}, 2 y \arctan x>$, evaluate $\int_{C} \vec{F} d \vec{r}$, where C has parametric equations $\vec{r}(t)=<$ $t^{2}, 2 t>$, with $0 \leq t \leq 1$. (Use a potential function of \vec{F}).
15) Use Green's theorem to evaluate $\oint_{C} x^{4} d x+x y d y$, where C is the contour of the triangle with vertices $A=(0,1), O=(0,0), B=(1,0)$, positively oriented.
16) Use Green's theorem to evaluate $\oint_{C} \vec{F} d \vec{r}$, where $\vec{F}=<y^{2} \cos x, x^{2}+2 y \cos x>$ and C is the triangular path from $O=(0,0)$ to $A=(2,6)$ to $B=(2,0)$ and back to $O=(0,0)$ (with this orientation!).
17) Consider the path C that from $A=(-2,0)$, along the x-axis, reaches the point $B=(2,0)$ and then goes back to $A=(-2,0)$ along the graph of $y=\sqrt{4-x^{2}}$. Find the work done by $\vec{F}=<x^{2}, x^{2}+2 x y>$ to move a particle along C.
18) Evaluate $\int_{C}(2-x-y) d s$, where C is the unit circle in the $x y$ with the center in the origin.
19) Use Green's theorem to evaluate $\oint_{C}\left(3 y-e^{\sin x}\right) d x+\left(7 x+\sqrt{y^{4}+1}\right) d y$, where C is the circle $x^{2}+y^{2}=9$, positively oriented.
20) Use Green's theorem to evaluate $\oint_{C}<\left(2 y^{2}+\sqrt{1+x^{5}}\right),\left(5 x-e^{y^{2}}\right)>d \vec{r}$, where C is the circle $x^{2}+y^{2}=4$, positively oriented.
21) Verify Green's theorem for $\vec{F}=<3 x-y, x+5 y>$, if C is the circle $x^{2}+y^{2}=1$, positively oriented.
22) Use the generalized form of Green's theorem to evaluate $\int_{C} y^{2} d x+3 x y d y$ where $C=C_{1} \cup C_{2}$ is the boundary of the annulus D enclosed between the circle C_{1} with radius 2 and center the origin, oriented anticlockwise, and the circle C_{2} with radius 1 and center the origin, oriented clockwise.
23) Consider C, the path from $O=(0,0)$ to $A=(2 \pi, 0)$ on the curve with parametric equation

$$
x(t)=t \cos t, \quad y(t)=t \sin t, \quad 0 \leq t \leq 2 \pi
$$

followed by the straight segment on the x-axis from $A=(2 \pi, 0)$ back to $O=(0,0)$. Use Green's theorem to find the area of the region D enclosed by C.
24) Use Green's theorem to find the area of the region D enclosed by the path C, if C has parametric equations $\vec{\varphi}(t)=<\sin 2 t, \sin t>, \quad 0 \leq t \leq \pi$.

Exercises. Week 10

1) Find the area of the part of the plane $x+2 y+z=4$ that lies inside the cylinder $x^{2}+y^{2}=4$.
2) Find the area of the part of $2 x+3 y-z=1$ that lies above the rectangle $[1,4] \times[2,4]$.
3) Find the area of the part of paraboloid $z=x^{2}+y^{2}$ that lies under the plane $z=9$.
4) Find the area of the sides of the cylinder $x^{2}+y^{2}=1$ enclosed between the plane $z=0$ and the plane $x+y+z=2$.
5) Evaluate $\iint_{S} x^{2} d S$, where S is the unit sphere $x^{2}+y^{2}+z^{2}=1$.
6) Evaluate $\iint_{S} z d S$ where S is the part of the cylinder $x^{2}+y^{2}=1$ between the planes $z=0$ and $z=x+1$.
7) Evaluate $\iint_{S} y z d S$ where S is the surface with parametric equations $x=u v, y=u+v, z=u-v$, $u^{2}+v^{2} \leq 1$.
8) Evaluate $\iint_{S}\left(x^{2} z+y^{2} z\right) d S$ where S is the hemisphere $x^{2}+y^{2}+z^{2}=4, z \geq 0$.
9) Find the mass of a funnel S that lies on the cone $z=\sqrt{x^{2}+y^{2}}, 1 \leq z \leq 4$, if the density is given by the function $\rho(x, y, z)=10-z .\left(\operatorname{mass}(S)=\iint_{S} \rho d S\right)$.
10) Evaluate $\iint_{S} x y d S$ where S is the part of the cylinder $x^{2}+z^{2}=1$ between the planes $y=0$ and $x+y=2$.
11) Evaluate $\iint_{S} \sqrt{1+x^{2}+y^{2}} d S$ where S is the helicoid with parametric equation $\vec{r}(u, v)=<u \cos v, u \sin v, v>, 0 \leq u \leq 1,0 \leq v \leq \pi$.
12) Evaluate $\iint_{S} \vec{F} \cdot d \vec{S}$, where $\vec{F}=<y, x, z>, S$ is the part of the paraboloid $z=1-x^{2}-y^{2}$ with $z \geq 0$.
13) Evaluate $\iint_{S} \vec{F} \cdot d \vec{S}$ where $\vec{F}=e^{y} \vec{i}+y e^{x} \vec{j}+x^{2} y \vec{k}$, and S is the part of the paraboloid $z=x^{2}+y^{2}$ that lies above the square $0 \leq x \leq 1,0 \leq y \leq 1$ and has upward orientation.
14) Evaluate $\iint_{S} \vec{F} \cdot d \vec{S}$ where $\vec{F}=x \vec{i}+x y \vec{j}+x z \vec{k}$, and S is the part of the plane $3 x+2 y+z=6$ that lies in the first octant with upward orientation.
15) Evaluate $\iint_{S} \vec{F} \cdot d \vec{S}$, where $\vec{F}=\langle 0, y,-z\rangle, S$ is the union of the part of the paraboloid $y=x^{2}+z^{2}$
with $0 \leq y \leq 1$ and the disk intersection of $x^{2}+z^{2} \leq 1$ with $y=1$, positively oriented.
16) Evaluate $\iint_{S} \vec{F} \cdot d \vec{S}$, where $\vec{F}=<y, x, z^{2}>, S$ is the helicoid with parametric equation $\vec{r}(u, v)=<$ $u \cos v, u \sin v, v>, 0 \leq u \leq 1,0 \leq v \leq \pi$, with the orientation induced by the parameterization.
17) A fluid with density 1 flows with velocity $\vec{v}=\langle y, 1, z\rangle$. Evaluate the rate of flow upward of the fluid through the part S of the paraboloid $z=9-\frac{\left(x^{2}+y^{2}\right)}{4}$, with $x^{2}+y^{2} \leq 36$. (Evaluate $\iint_{S} \vec{v} \cdot d \vec{S}$)
18) The temperature at a point (x, y, z), of a substance with conductivity $k=6,5$, is given by the function $u(x, y, z)=2 y^{2}+2 z^{2}$. Find the rate of heat flow inward across the part S of the cylinder $y^{2}+z^{2}=6,0 \leq x \leq 4$. (Evaluate $\iint_{S}-k \nabla u \cdot d \vec{S}$.)

Exercises. Week 11-12

1) Use Stoke's theorem to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$, for $\vec{F}=<y z, x z, x y>, C$ is any closed curve in \mathbb{R}^{3}.
2) Use Stoke's theorem to evaluate $\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S}$, where $\vec{F}=<x y z, x, e^{x y} \cos z>, S$ is the hemisphere $x^{2}+y^{2}+z^{2}=1, z \geq 0$ oriented upward.
3) Use Stoke's theorem to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}=<2 z, 4 x, 5 y>, C$ is the intersection of $z=x+4$ with the cylinder $x^{2}+y^{2}=4$.
4) Use Stoke's theorem to evaluate $\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S}$, where $\vec{F}=<y^{2} z, x z, x^{2} y^{2}>, C$ is the part of the paraboloid $z=x^{2}+y^{2}$ that lies inside the cylinder $x^{2}+y^{2}=1$ oriented upward.
5) Use Stokes' Theorem to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}=<x z, 2 x y, 3 x y>, C$ is the boundary of the part of the plane $3 x+y+z=3$ in the first octant oriented counterclockwise as viewed from above.
6) Calculate the work done by the force field $\vec{F}=\left(x^{x}+z^{2}\right) \vec{i}+\left(y^{y}+x^{2}\right) \vec{j}+\left(z^{z}+y^{2}\right) \vec{k}$ when a particle moves under its influence around the edge of the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies in the first octant, in a counterclockwise direction as viewed from above.
7) Use the Divergence Theorem to calculate the flux of \vec{F} across S (that is, the surface integral $\left.\iint_{S} \vec{F} \cdot d \vec{S}\right)$, where
a) $\vec{F}=3 y^{2} z^{3} \vec{i}+9 x^{2} y z^{2} \vec{j}-4 x y^{2} \vec{k}$, and S is the surface of the cube with vertices $(\pm 1, \pm 1, \pm 1)$;
b) $\vec{F}=x^{3} \vec{i}+y^{3} \vec{j}+z^{3} \vec{k}$, and S is the sphere $x^{2}+y^{2}+z^{2}=1$.
8) Verify that the Divergence Theorem is true for the vector field $\vec{F}(x, y, z)=<3 x, x y, 2 x z>$ where the region E is the cube bounded by the planes $x=0, x=1, y=0, y=1, z=0$, and $z=1$.
9) Use the divergence theorem to evaluate $\iint_{S} \vec{F} \cdot d \vec{S}$, where $\vec{F}=<x^{2} y,-x^{2} z, z^{2} y>, S$ is the surface of the rectangular box bounded by $x=0, x=3, y=0, y=2, z=0, z=1$.
10) Use the divergence theorem to evaluate $\iint_{S} \vec{F} \cdot d \vec{S}$, where $\vec{F}=<x y, y^{2}+e^{x z}, \sin (x y)>, S$ is the surface of the region bounded by the parabolic cylinder $z=1-x^{2}$ and the planes $z=0, y=0$, and $y+z=2$.

Exercises. Week 13

1) Find the Fourier series of the periodic extension of $f(t)=\left\{\begin{aligned} 1, & t \in[0,1), \\ -1, & t \in[1,2) .\end{aligned}\right.$
2) Given $f(t)=t^{2} \quad t \in[-1,1]$, find its Fourier series. Justified by Jordan criterion, substitute $t=1$ into the found series to prove that $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$.
3) For (the appropriate periodic extension of) $f(t)=\left\{\begin{array}{rr}-t+1, & t \in[0,1) \\ 0, & t \in[1,2)\end{array}\right.$
find the Fourier series, the sine Fourier series and the cosine Fourier series. For each series determine its sum.
4) For (the appropriate periodic extension of) $f(t)=\left\{\begin{array}{ll}t, & t \in[0,1) \\ 1, & t \in[1,2)\end{array}\right.$ find the Fourier series, the sine Fourier series and the cosine Fourier series. For each series determine its sum.
5) Find the Fourier series of $f(t)=|\sin t|$.
6) Find the Fourier series of the periodic extension of $f(t)=\left\{\begin{aligned} \sin t, & t \in[0, \pi), \\ 0, & t \in[\pi, 2 \pi) .\end{aligned}\right.$
