
Czech Technical University in Prague

Faculty of Electrical Engineering

Calculus 2 - Exercises

Miroslav Korbelá°

Paola Vivi

Prague 2016

Authors were supported by the project RPAPS 13101/105/1051603C005.



Exercises. Week 1

1) Find domain of f(x, y) = ln x2+2x+y2

x2−2x+y2 , f(x, y, z) = arcsin z√
x2+y2

.

2) Find domain of f(x, y, z) = x
|y+z| , g(x, y) =

√
1− |x| − |y|.

3) Graph f(x, y) = x2 + y2, g(x, y) = 4x2 + 9y2, discuss level curves.

4) Verify that lim
(x,y)→(0,0)

ey sin x
x = 1, lim

(x,y)→(1,0)

x sin y
x2+y = 0, lim

(x,y,z)→(0,0,0)

2−
√
4−xyz
xyz = 1

4 .

5) Approach zero along di�erent paths to prove that the following limits do not exist:

lim
(x,y)→(0,0)

x4

x4+y2 , lim
(x,y)→(0,0)

x4−y2
x4+y2 ,

lim
(x,y)→(0,0)

−x√
x2+y2

, lim
(x,y)→(0,0)

x2+y2√
x4+y4

.

6) Use ε-δ- proof to verify that

lim
(x,y)→(0,0)

x3+y3√
x2+y2

= 0, lim
(x,y)→(0,0)

x2y√
x2+y2

= 0, lim
(x,y)→(0,0)

2xy√
x2+y2

= 0.

7) Use polar coordinates x = r cosϑ, y = r sinϑ to solve the previous limits and the limits discussed
during the lecture.

8) Find c ∈ R such that f(x, y) =

{
xy
|x|+|y| (x, y) 6= (0, 0)

c (x, y) = (0, 0)
is continuous everywhere, prove the existence

of the limit at zero with an ε-δ- proof.

9) Get acquainted with the quadric surfaces. Draw the surfaces with the given equation for a = b = c = 1:
x2

a2 + y2

b2 + z2

c2 = 1 ellipsoid
x2

a2 + y2

b2 −
z2

c2 = 1 hyperboloid of one sheet

−x
2

a2 −
y2

b2 + z2

c2 = 1 hyperboloid of two sheets
z2

c2 = x2

a2 + y2

b2 cone
z
c = x2

a2 + y2

b2 elliptic paraboloid
z
c = x2

a2 −
y2

b2 hyperbolic paraboloid
x2

a2 + y2

b2 = 1 elliptic cylinder
y = ax2 parabolic cylinder.

Exercises. Week 2

1) Given f(x, y) = sinh
√
3x+ 4y, �nd D(f), fx, fy.

2) Given f(x, y, z) = xy2z3 ln(x+ 2y + 3z), �nd D(f), fx, fy, fz.

3) Given f(x, y, z) = exy
2

+ x4y4z3, verify that fxy = fyx, fxz = fzx, fzy = fyz. Find fxyz.

4) Is f(x, y) = x2 − y2 a solution of Laplace equation ∂2f
∂x2 + ∂2f

∂y2 = 0?

5) Find linearization of f(x, y, z) = ex + cos(y + z) at (0, π4 ,
π
4 ).
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6) Given f(x, y) = ln(x − 3y), �nd its linearization at (x0, y0) = (7, 2). Use the result to approximate
the value of f at (6.9, 2.02).

7) Given f(x, y) = xexy, �nd its linearization at (x0, y0) = (6, 0). Use the result to approximate the
value of f at (5.9, 0.01).

8) Find tangent plane to z = ln(2x+ y) at (−1, 3, 0).

9) Given the function f(x, y) =

{
x3y−xy3
x2+y2 (x, y) 6= (0, 0)

0 (x, y) = (0, 0)
,

prove that f is continuous, fx and fy exist everywhere but fxy(0, 0) 6= fyx(0, 0).

Exercises. Week 3

1) z = x
√

1 + y2, x = te2t, y = e−t, �nd dz
dt .

2) z = sinx cos y, x = (s− t)2, y = s2 − t2, �nd ∂z
∂s and ∂z

∂t .

3) u = xy + yz + zx, x = st, y = est, z = t2, �nd ∂u
∂s and ∂u

∂t .

4) In a circular cylinder, the radius R is decreasing at a rate of 1.2 cm/s, while its height h is increasing
at a rate of 3 cm/s. At what rate is the volume of the cylinder changing when R = 80 cm and h = 150 cm?

5) In a right circular cone, the radius R is increasing at a rate of 1.8 cm/s, while its height h is decreasing
at a rate of 2.5 cm/s. At what rate are the volume and surface of the cone changing when R = 12 cm
and h = 140 cm?

6) Prove that any function of the form h(x, t) = f(x+ at) + g(x− at), a ∈ R, is a solution of the wave

equation ∂2h
∂t2 = a2 ∂

2h
∂x2 .

7) Verify that 2y2 + 3
√
xy = 3x2 + 18 de�nes y as a function of x around P = (−2, 4), �nd dy

dx

∣∣
P

8) Using the implicit function theorem �nd the tangent line to the given curve at the given point:
x2 − xy + y4 = 3, A = (1,−1); x cos y + y cosx = 1, B = (1, 0),
2y2 ++ 3

√
xy = 3x2 + 22, C = (2, 4).

9) Rewrite the Laplace equation ∂2f
∂x2 + ∂2f

∂y2 = 0 using polar coordinates.

10) Solve the partial di�erential equation x∂f∂x + y ∂f∂y = 1 changing it into polar coordinates.

11) Find ∇f
∣∣
P
for f(x, y) = ln(x2 + y2), P = (1, 1).

12) Find ∇f
∣∣
P
for f(x, y, z) = ex+y cos z + (y + 1) sinx, P = (0, 0π/2).

13) Find D~uf
∣∣
P
for f(x, y, z) = 3ex cos(yz), P = (0, 0, 0), ~v =< 2, 1,−2 >.

14) Find D~uf
∣∣
P
for f(x, y, z) = x2 + 2y2 − 3z2, P = (0, 0, 0), ~v =< 1, 1, 1 >.
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15) Find tangent plane and normal line to the given surface at the given point:
x2

4 + y2 + z2

9 = 3 at P = (−2, 1,−3), x2 − 2y2 − 3z2 + xyz = 4 at A = (3,−2, 1),
z + 1 = xey cos z at B = (1, 0, 0).

16) Prove that the ellipsoid 3x2 + 2y2 + z2 = 9 and the sphere x2 + y2 + z2 − 8x − 6y − 8z + 24 are
tangent at the point P = (1, 1, 2).

17) Find the maximal and minimal rate of change of f(x, y) = xe−y + 3y at P = (1, 0) in the direction
in which they occur.

18) Find the maximal and minimal rate of change of f(x, y, z) = x
y +

y
z at P = (4, 2, 1) in the direction

in which they occur.

Exercises. Week 4

1) We recall that the quadratic approximation of a function f(~x), whose partial derivatives of second
order are de�ned and continuous on a neighbourhood of a point ~a, is de�ned as:

Q(~x) = f(~a) +Df(~a)(~x− ~a) + 1
2 (~x− ~a)

THf(~a)(~x− ~a).
Find the quadratic approximation of f(x, y) = (1 + x2)ex

2+y2 at ~a = (0, 0),
and of g(x, y) = xey + 1 at ~a = (1, 0).

2) Find local maximum, minimum and saddle points for f(x, y) = 6x2 − 2x3 + 3y2 + 6xy.

3) Find local maximum, minimum and saddle points for f(x, y) = 4xy − x4 − y4.

4) Find local maximum, minimum and saddle points for f(x, y) = y
√
x− y2 − x+ 6y.

5) Find local maximum, minimum and saddle points for f(x, y) = x2y2−8x+y
xy .

6) Find two numbers a ≤ b such that
∫ b
a
(6−x−x2) dx has largest value. Find a geometrical interpretation

of the problem.

7) Find absolute max. and min. value of f(x, y) = x2 + xy + y2 − 6x + 2 on the rectangle 0 ≤ x ≤ 5,
−3 ≤ y ≤ 0.

8) Find absolute max. and min. value of f(x, y) = 2x3+y4 on the regionD = {(x, y) ∈ R2 : x2+y2 ≤ 1}.

9) Find absolute max. and min. value of f(x, y) = x2 + y2 − 6x− 4y + 11 on the region D = {(x, y) ∈
R2 : x2 + y2 − 4x ≤ 5}.

10) The temperature of a heated plate is given by T (x, y) = 4x2 − 4xy + y2. A bug walks on the plate
along a circle centred at (0, 0) with radius 5. Find the coordinates of the hottest and coldest points
reached by the bug and the temperature there.

11) Use Lagrange multipliers to �nd the maximum and minimum value of f(x, y, z) = x + 3y + 5z
on x2 + y2 + z2 = 1. Then use the geometrical meaning of the gradient and the fact that f is a linear
function to �nd a geometrical solution of the problem.

12) Find the points on xy2 = 54 nearest to the origin.
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Exercises. Week 5-6

1) Integrate f(x, y) = xe(xy) over the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

2) Integrate f(x, y) = 1
x+y over the rectangle 1 ≤ x ≤ 2, 0 ≤ y ≤ 1.

3) Sketch the region of integration and evaluate the integral
∫ 1

0

∫ y2
0

3y3exy dx dy.

4) Evaluate
∫ ln 8

1

∫ ln y

0
ex+y dxdy.

5) Evaluate
∫ ∫

D
sin x
x dA, where A is the triangle with vertices (0, 0), (1, 0), (1, 1).

6) Change order of integration in the following integrals∫ 1

0

∫ √x
0

f(x, y) dxdy,

∫ π
2

0

∫ sin x

0

f(x, y) dydx,

∫ 1

0

∫ x

0

f(x, y) dydx+

∫ 2

1

∫ 2−x

0

f(x, y) dydx.

7) Change order of integration to evaluate
∫ 1

0

∫ 1

x
e
x
y dxdy.

8) Change order of integration to evaluate
∫ 2
√
ln 3

0

∫√ln 3

y/2
ex

2

dxdy.

9) Rewrite the integral, �rst changing order of integration, then transforming it using polar coordinates∫ 1

0

∫ 2−y

0

f(x, y) dxdy,

∫ 2a

0

∫ √2ax

√
2ax−x2

f(x, y) dydx, a > 0.

10) Evaluate
∫ ∫

R
ex

2+y2 dxdy, where R is the half disk with center (0, 0) and radius 1 lying above the
x-axis by changing the integral into polar coordinates.

11) Evaluate with the use of a double integral the area of a disk of radius one.

12) Sketch the curve and �nd the area of the region the curve encloses (in polar coordinates):

ρ = sinϑ, ϑ ∈ [0, π], ρ = 1 + sinϑ, ϑ ∈ [0, 2π],

ρ = cos(2ϑ), ϑ ∈ [0, 2π], ρ = |ϑ|+ 1, ϑ ∈ [−π, π].

13) With the use of a double integral in polar coordinates, evaluate the area enclosed by the curves
with equation ρ = 3 + 2 sinϑ, ρ = 2.

14) Use polar coordinates to evaluate:∫ 1

0

∫ √2−x2

x

x√
x2 + y2

dxdy,

∫ 1

0

∫ x

0

x

x2 + y2
dydx,
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∫ 2

−2

∫ √4−x2

0

x2 − y2√
x2 + y2

dxdy,

∫ 1

0

∫ √1−x2

0

arctan
y

x
dydx,

∫ √2

0

∫ √4−y2

y

1

1 + x2 + y2
dxdy.

15) Find the volume of the solid bounded by z = 0, and the paraboloid z = 1− x2 − y2.

16) Find the volume of the solid bounded by z = 9, and the paraboloid z = x2 + y2.

17) Find the volume of the solid bounded by the paraboloides z = 4− x2 − y2 and z = 3x2 + 2+ 3y2.

18) Use polar coordinates to �nd the volume of a right circular cone with height h and a circular base
with radius R.

19) Knowing that the average value of a function f over a region R is by de�nition

Average(f(x, y)) =
1

Area(R)

∫ ∫
R

f(x, y) dA

�nd the average value of f(x, y) = x cos(xy) over the rectangle R = [0, π]× [0, 1].

20) Knowing that the mass m and the center of gravity C = (x0, y0) of a �at object occupying a region
of the plane D with density ρ(x, y) are de�ned by

m =

∫ ∫
D

ρ(x, y) dA,

x0 =
1

m

∫ ∫
D

xρ(x, y) dA, y0 =
1

m

∫ ∫
D

yρ(x, y) dA,

�nd the mass and center of gravity of
a) a triangle with vertex at (0, 0), (1, 1), (4, 0) and density ρ(x, y) = x,
b) the part of the plane bounded by the parabola y = 9−x2 and the x-axis, with density ρ(x, y) = y.

21) Use a substitution to evaluate
∫ ∫

R
(x + 2y) 3

√
x− y dA, where R is the closed region bounded by

y = x, y = x− 1, x+ 2y = 0, x+ 2y = 2.

22) Use a substitution to evaluate
∫ 1

0

∫ 1−x
0

√
x+ y(y − 2x)2 dydx.

23) Use a substitution to evaluate
∫ ∫

R
(x+ y) cos(π(x− y)) dA, where

R = {(x, y) ∈ R2 : 0 ≤ x+ y, x ≤ 1, 1 + y ≤ x ≤ 2 + y}.

24) Use a substitution to evaluate
∫ ∫

R
y
xe
xy dA, where R is the closed region bounded by xy = 2,

xy = 4, y = 2x, y = x
2 .

25) Evaluate the integral
∫ ∫

T
e−y

2

dA over the unbounded region T = {(x, y) ∈ R2 : 0 ≤ x ≤ y}.

26) Evaluate the integral
∫∞
2

∫ y
2

1−ln x
y3 dA.
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Exercises. Week 7-8

1) Evaluate
∫ 1

0

∫ π
0

∫ π
0
y sin z dxdydz.

2) Evaluate
∫ 3

0

∫√9−x2

0

∫ x
0
yz dydzdx.

3) Sketch the region of integration∫ 1

0

∫ z

0

∫ y

0

fdxdydz,

∫ 1

0

∫ 2x

x

∫ x+y

0

fdzdydx,

∫ π

0

∫ 2

0

∫ √4−z2

0

fdxdzdy,

∫ 3

0

∫ √9−x2

0

∫ x

0

fdydzdx,

4) Sketch the region of integration and evaluate∫ 1

0

∫ 3−3x

0

∫ 3−3x−y

0

dz dy dx,

∫ π

0

∫ ln(sin y)

0

∫ z

−∞
ex dx dz dy.

5) Set up the integral
∫∫∫

E
fdV , using all possible orders of integration, where E is bounded by the

surfaces:

a)x2 + z2 = 4, y = 0, y = 6, b) z = 0, z = y, x2 = 1− y, 9x2 + 4y2 + z2 = 1.

6) Evaluate
∫∫∫

E
exdV where E = {(x, y, z), 0 ≤ y ≤ 1, 0 ≤ x ≤ y, 0 ≤ z ≤ x+ y}.

7) Evaluate
∫∫∫

E
y dV where E is bounded above by the plane z = x+ 2y, and lies above the region of

the xy-plane enclosed by the curves y = x2, y = 0, x = 1.

8) Evaluate
∫∫∫

E
xy dV where E is the tetrahedron with vertex in (0, 0, 0), (0, 1, 0), (1, 1, 0), (0, 1, 1).

9) Evaluate
∫∫∫

E
x dV where E is bounded by the paraboloid x = 4y2 + 4z2 and the plane x = 4.

10) Use cylindrical coordinates to evaluate
∫∫∫

D
x2+ y2 dV , where D is the solid bounded below by the

cone z =
√
x2 + y2, and above by the plane z = 2.

11) Use spherical coordinates to evaluate
∫∫∫

B
(x2+y2+z2) dV , where B is the unit ball x2+y2+z2 ≤ 1.

12) Find the volume of the region bounded above by the sphere z = x2+ y2+ z2 and below by the cone

z =
√
x2 + y2.

13) Find the volume of the solid bounded by the elliptic cylinder 4x2 + z2 = 4 and the planes y = 0,
y = z + 2.

14) Sketch the region of integration and evaluate:∫ 2π

0

∫ 2

0

∫ 4−r2

0

r dzdrdϑ,

∫ π
2

0

∫ π
2

0

∫ 1

0

ρ2 sinϕdρdϑdϕ.
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15) Evaluate
∫∫∫

E
x2 + y2 dV , where E = {(x, y, z), x2 + y2 ≤ 4,−1 ≤ z ≤ 2}.

16) Evaluate
∫∫∫

E
x2 dV , where E is the region inside the cylinder x2 + y2 = 1, bounded above by the

cone z2 = 4x2 + 4y2, and below by z = 0.

17) Evaluate
∫∫∫

E
xe(x

2+y2+z2)2 dV , where E is the region bounded by the spheres centred at the origin
with radius 1 and 2.

18) Change the integral to cylindrical coordinates and then evaluate it:∫ 1

−1

∫ √1−x2

−
√
1−x2

∫ 2−x2−y2

x2+y2
(x2 + y2)

3
2 dzdydz,

∫ 1

−1

∫ √1−y2

0

∫ √x2+y2

x2+y2
xyz dzdxdy.

19) Change the integral to spherical coordinates and then evaluate it:

∫ 3

−3

∫ √9−x2

−
√
9−x2

∫ √9−x2−y2

0

z
√
x2 + y2 + z2 dzdydz,

∫ 3

0

∫ √9−y2

0

∫ √18−x2−y2

√
x2+y2

(x2 + y2 + z2) dzdxdy.

Exercises. Week 9

1) Evaluate the length of the spiral with parametric equation −→ϕ (t) =< 2 cos t, 2 sin t, tπ >, with t ∈
[0, 2π].

2) Calculate the length of the cycloid with parametric equation −→ϕ (t) =< t − sin t, 1 − cos t >, with
t ∈ [0, 2π].

3) Find the length of the curve ρ = 1 + cos t, with t ∈ [0, 2π].

4) Evaluate
∫
C
(x+ y) ds, where C is the circle centred at (1/2, 0) with radius 1/2.

5) Integrate f(x, y) = x+ y2 over the line segment from A = (0, 0) to B = (1, 1).

6) Evaluate
∫
C
y sin z ds, where C is the circular helix with parametric equations x = cos t, y = sin t,

z = t, 0 ≤ t ≤ 2π.

7) Evaluate
∫
C
~F ·d~r, where ~F =< x2, xy >, C is the part of x

2

4 + y2

9 = 1, with y ≥ 0 positively oriented.

8) Find the work done by the force �eld ~F = x~i + y~j + (xz − y)~k to move a particle along the curve
with parametric equations ~r(t) =< t2, 2t, 4t3 >, 0 ≤ t ≤ 1, from A = (0, 0, 0) to B = (1, 2, 4).
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9) Find the work done by the force �eld ~F =< x2, yex > to move a particle along the curve x = y2 +1,
from A = (1, 0) to B = (2, 1).

10) Show that ~F =< ex cos y+ yz, xz− ex sin y, xy+ z > is conservative, then �nd a potential function

and use it to evaluate
∫
C
~F · d~r where C is any path from A = (1, 0, 2) to B = (0, π, 1).

11) Determine if the following vector �elds are conservative, and evaluate a potential (if any):

~F (x, y, z) =< eyz, xzeyz, xyeyz >, ~G(x, y, z) =< 1, sin z, y cos z > .

12) Show that the integral is independent on the path, and evaluate it:∫
C

tan y dx+ x sec2 y dy, C from (1, 0) to (2,
π

4
).

13) Given ~F (x, y) =< x2, y2 >, evaluate
∫
C
~F d~r, where C is the path on y = 2x2 from (1, 2) to (2, 8).

(Use both a direct computation of the line integral, and a potential function of ~F ).

14) Given ~F (x, y) =< y2

1+x2 , 2y arctanx >, evaluate
∫
C
~F d~r, where C has parametric equations ~r(t) =<

t2, 2t >, with 0 ≤ t ≤ 1. (Use a potential function of ~F ).

15) Use Green's theorem to evaluate
∮
C
x4 dx + xy dy, where C is the contour of the triangle with

vertices A = (0, 1), O = (0, 0), B = (1, 0), positively oriented.

16) Use Green's theorem to evaluate
∮
C
~F d~r, where ~F =< y2 cosx, x2+2y cosx > and C is the triangular

path from O = (0, 0) to A = (2, 6) to B = (2, 0) and back to O = (0, 0) (with this orientation!).

17) Consider the path C that from A = (−2, 0), along the x-axis, reaches the point B = (2, 0) and then

goes back to A = (−2, 0) along the graph of y =
√
4− x2. Find the work done by ~F =< x2, x2 + 2xy >

to move a particle along C.

18) Evaluate
∫
C
(2− x− y) ds, where C is the unit circle in the xy with the center in the origin.

19) Use Green's theorem to evaluate
∮
C
(3y − esin x) dx + (7x +

√
y4 + 1) dy, where C is the circle

x2 + y2 = 9, positively oriented.

20) Use Green's theorem to evaluate
∮
C
< (2y2 +

√
1 + x5), (5x − ey2) > d~r, where C is the circle

x2 + y2 = 4, positively oriented.

21) Verify Green's theorem for ~F =< 3x−y, x+5y >, if C is the circle x2+y2 = 1, positively oriented.

22) Use the generalized form of Green's theorem to evaluate
∫
C
y2 dx+3xy dy where C = C1∪C2 is the

boundary of the annulus D enclosed between the circle C1 with radius 2 and center the origin, oriented
anticlockwise, and the circle C2 with radius 1 and center the origin, oriented clockwise.

23) Consider C, the path from O = (0, 0) to A = (2π, 0) on the curve with parametric equation

x(t) = t cos t, y(t) = t sin t, 0 ≤ t ≤ 2π,
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followed by the straight segment on the x-axis from A = (2π, 0) back to O = (0, 0). Use Green's theorem
to �nd the area of the region D enclosed by C.

24) Use Green's theorem to �nd the area of the region D enclosed by the path C, if C has parametric
equations −→ϕ (t) =< sin 2t, sin t >, 0 ≤ t ≤ π.

Exercises. Week 10

1) Find the area of the part of the plane x+ 2y + z = 4 that lies inside the cylinder x2 + y2 = 4.

2) Find the area of the part of 2x+ 3y − z = 1 that lies above the rectangle [1, 4]× [2, 4].

3) Find the area of the part of paraboloid z = x2 + y2 that lies under the plane z = 9.

4) Find the area of the sides of the cylinder x2+ y2 = 1 enclosed between the plane z = 0 and the plane
x+ y + z = 2.

5) Evaluate
∫ ∫

S
x2 dS, where S is the unit sphere x2 + y2 + z2 = 1.

6) Evaluate
∫ ∫
S

z dS where S is the part of the cylinder x2 + y2 = 1 between the planes z = 0 and

z = x+ 1.

7) Evaluate
∫ ∫
S

yz dS where S is the surface with parametric equations x = uv, y = u+ v, z = u− v,

u2 + v2 ≤ 1.

8) Evaluate
∫ ∫
S

(x2z + y2z) dS where S is the hemisphere x2 + y2 + z2 = 4, z ≥ 0.

9) Find the mass of a funnel S that lies on the cone z =
√
x2 + y2, 1 ≤ z ≤ 4, if the density is given by

the function ρ(x, y, z) = 10− z. (mass(S) =
∫ ∫

S
ρ dS).

10) Evaluate
∫ ∫
S

xy dS where S is the part of the cylinder x2 + z2 = 1 between the planes y = 0 and

x+ y = 2.

11) Evaluate
∫ ∫
S

√
1 + x2 + y2 dS where S is the helicoid with parametric equation

−→r (u, v) =< u cos v, u sin v, v >, 0 ≤ u ≤ 1, 0 ≤ v ≤ π.

12) Evaluate
∫ ∫

S
~F · d~S, where ~F =< y, x, z >, S is the part of the paraboloid z = 1 − x2 − y2 with

z ≥ 0.

13) Evaluate
∫ ∫
S

~F · d~S where ~F = ey~i+ yex~j + x2y~k, and S is the part of the paraboloid z = x2 + y2

that lies above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and has upward orientation.

14) Evaluate
∫ ∫
S

~F · d~S where ~F = x~i+ xy~j + xz~k, and S is the part of the plane 3x+ 2y + z = 6 that

lies in the �rst octant with upward orientation.

15) Evaluate
∫ ∫

S
~F ·d~S, where ~F =< 0, y,−z >, S is the union of the part of the paraboloid y = x2+z2
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with 0 ≤ y ≤ 1 and the disk intersection of x2 + z2 ≤ 1 with y = 1, positively oriented.

16) Evaluate
∫ ∫

S
~F ·d~S, where ~F =< y, x, z2 >, S is the helicoid with parametric equation −→r (u, v) =<

u cos v, u sin v, v >, 0 ≤ u ≤ 1, 0 ≤ v ≤ π, with the orientation induced by the parameterization.

17) A �uid with density 1 �ows with velocity ~v =< y, 1, z >. Evaluate the rate of �ow upward of the

�uid through the part S of the paraboloid z = 9− (x2+y2)
4 , with x2 + y2 ≤ 36. (Evaluate

∫ ∫
S
~v · d~S)

18) The temperature at a point (x, y, z), of a substance with conductivity k = 6, 5, is given by the
function u(x, y, z) = 2y2 + 2z2. Find the rate of heat �ow inward across the part S of the cylinder

y2 + z2 = 6, 0 ≤ x ≤ 4. (Evaluate
∫ ∫

S
−k∇u · d~S.)

Exercises. Week 11-12

1) Use Stoke's theorem to evaluate
∫
C
~F · d~r, for ~F =< yz, xz, xy >, C is any closed curve in R3.

2) Use Stoke's theorem to evaluate
∫ ∫

S
curl ~F ·d~S, where ~F =< xyz, x, exy cos z >, S is the hemisphere

x2 + y2 + z2 = 1, z ≥ 0 oriented upward.

3) Use Stoke's theorem to evaluate
∫
C
~F ·d~r, where ~F =< 2z, 4x, 5y >, C is the intersection of z = x+4

with the cylinder x2 + y2 = 4.

4) Use Stoke's theorem to evaluate
∫ ∫

S
curl ~F · d~S, where ~F =< y2z, xz, x2y2 >, C is the part of the

paraboloid z = x2 + y2 that lies inside the cylinder x2 + y2 = 1 oriented upward.

5) Use Stokes' Theorem to evaluate
∫
C
~F · d~r, where ~F =< xz, 2xy, 3xy >, C is the boundary of the

part of the plane 3x+ y + z = 3 in the �rst octant oriented counterclockwise as viewed from above.

6) Calculate the work done by the force �eld ~F = (xx + z2)~i+ (yy + x2)~j + (zz + y2)~k when a particle
moves under its in�uence around the edge of the part of the sphere x2 + y2 + z2 = 4 that lies in the �rst
octant, in a counterclockwise direction as viewed from above.

7) Use the Divergence Theorem to calculate the �ux of ~F across S ( that is, the surface integral∫ ∫
S

~F · d~S), where

a) ~F = 3y2z3~i+ 9x2yz2~j − 4xy2~k, and S is the surface of the cube with vertices (±1,±1,±1);
b) ~F = x3~i+ y3~j + z3~k, and S is the sphere x2 + y2 + z2 = 1. .

8) Verify that the Divergence Theorem is true for the vector �eld ~F (x, y, z) =< 3x, xy, 2xz > where the
region E is the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, and z = 1.

9) Use the divergence theorem to evaluate
∫ ∫

S
~F · d~S, where ~F =< x2y,−x2z, z2y >, S is the surface

of the rectangular box bounded by x = 0, x = 3, y = 0, y = 2, z = 0, z = 1.

10) Use the divergence theorem to evaluate
∫ ∫

S
~F · d~S, where ~F =< xy, y2 + exz, sin(xy) >, S is the

surface of the region bounded by the parabolic cylinder z = 1 − x2 and the planes z = 0, y = 0, and
y + z = 2.
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Exercises. Week 13

1) Find the Fourier series of the periodic extension of f(t) =

{
1, t ∈ [0, 1),

−1, t ∈ [1, 2).

2) Given f(t) = t2 t ∈ [−1, 1], �nd its Fourier series. Justi�ed by Jordan criterion, substitute t = 1

into the found series to prove that
∞∑
k=1

1
k2 = π2

6 .

3) For (the appropriate periodic extension of) f(t) =

{
−t+ 1, t ∈ [0, 1)

0, t ∈ [1, 2)

�nd the Fourier series, the sine Fourier series and the cosine Fourier series. For each series determine
its sum.

4) For (the appropriate periodic extension of) f(t) =

{
t, t ∈ [0, 1)

1, t ∈ [1, 2)
�nd the Fourier series, the sine

Fourier series and the cosine Fourier series. For each series determine its sum.

5) Find the Fourier series of f(t) = | sin t|.

6) Find the Fourier series of the periodic extension of f(t) =

{
sin t, t ∈ [0, π),

0, t ∈ [π, 2π).
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