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1 Sets in R" and their properties

Exercise 1.1. Construct examples of a nonempty set M in R?, that
(i) has no interior point,
(#) has no boundary point,
(i4i) has no exterior point,
(iv) has no accumulation point,

(v) has no isolated point.

Solution:

(i) Any countable set (for example Q?), a circle, a line (and many of other examples).

(ii) From the condition M = (), it follows that M° C M C M = OMUM?® = M°, thus M° = M = M
and the set M is both open and closed. The only such nonempty set is M = R2.

(iii) The exterior set is equal to R? \ M, thus, we need to have M = R? (such set is called dense).
We may again choose for example M = Q2.

(iv) any finite set; N? (and many of other examples).

(v) any open set (and many of other examples).

Exercise 1.2. Determine the interior, boundary and closure of the following sets:
(i) M = {(a,b) € R? | a® + 2a + b? < 3,a® — 4a + b*> < 0};

(ii) M = Q3 C R®, where Q is the set of all rational numbers.

Solution:

(i) The given sets may be adjusted and transform on a clearer shape. Completing the squares, we rewrite
the first inequality: (a + 1)2 4 b2 < 4 or ||(a,b) — (—1,0)||* < 4. Similarly, the second inequality means
[[(a,b) — (2,0)||* < 4. The set M can be seen as

M =ANB ,where A=Uy(—1,0) a B=U,(2,0),
that is, as the intersection of two closed balls. For € > 0 and zo € R? we use the following notation

U.(z0) :=={z € R? | |z — 2ol < e}

Closure of M: now we know that both sets A and B are the closure of certain setsLthus are close.
The set M is their intersection, thus is also closed, therefor is the closure of itself (i.e. M = M).

Interior of M: We use the relation M° = (AN B)° = A° N B°. Because A° = (Ug(—l,O)) =
Us(—1,0) (it is easy to prove). Similarly it holds for B , thus we get

M® = {(a,b) € R? | a® +2a +b* < 3,0 — da +b* < 0}.
Boundary of M: o
OM =M\ M° =
{(a,b) eR? | (a®* +2a+b* =3 & a®> —4a+b* <0)V (a®* +2a+b* <3 & a® —4a +V* = 0)}.




Important observation: Let f: D — R (where D C R™) be a continuous function. Then the set
[ (=00,0) ={a € D] f(a) < 0}

(i.e. the open interval (—oo,0) C R) is an open set within the set D, or f~1(—00,0) = DN U for a
certain open set U. Similarly
fH(=00,0) ={a € D] f(a) < 0}

(i,e, the close interval (—oo,0) C R is a closed set within the set D, or f~1(—00,0) = DN F for a certain
closed set F'.

Because the functions f(a,b) = a? 4+ 2a + b* — 3 and g(a,b) = a® — 4a + b? are continuous on R?, the
set
M = {(a,b) € R? | a® +2a +b* < 3,a* — 4a + b*> < 0}

is closed (or M = M) and the set
N = {(a,b) € R* | a® + 2a + b* < 3,a® — 4a + b* < 0}

is open (or N° = N).

Attention Usually, with this approach we may not get exactly the interior of M°, but only a subset
of it N C M°. Equality should not generally occur, for example, for A = {z € R| — 2% < 0} we have

{zeR| —2®> <0} =R\ {0} SR=A°

For equality we need to use the implicit function theorem. From that theorem, then follows this
statement:

Theorem: Let U C R" be an open set, and f : U — R a continuous differentiable function on U.
Let us put
A={ze U] f(x) <0}.

If, for every zo € A such that f(xzg) =0, we have f'(z¢) = (aanlv . ﬁ)l # 0, then
o

Y Oxp
A°={zeU| f(z) <0}

In our case, for f(a,b) = a® + 2a + b% — 3, we really have f'(a,b) = (%, %) = (2(1 + 2,2b). If by chance we had
that f’(a,b) = 0, then we have a = —1 and b = 0 and thus f(—1,0) = —4 # 0. The condition of the previous theorem are

fulfilled, and thus we really have that {(a,b) € R? | a®42a-+b? < 3} is the interior of the set {(a,b) € R? | a®+2a+b? < 3}.

(ii) We realize that in every neighborhood of any r € R lies as well a rational number as some irrational number.
Furthermore, if we have |r; — s;| < € for i = 1,2,3 (where 7;,s; € R and € > 0) then ||(r1,72,73) — (s1,52,53)|| < V3 -e.
In particular, thus in any neighborhood of the point x € R3 lies an element of Q3, and as well an element ofR3 \ Q3. Thus,
we may immediately write

@ =R’ (@)°=0a 0Q°=0Q3\(Q*° =R

Exercise 1.3. Find examples of sets for which the following holds:
(i) A, , n €N are open, but (), Ay is not open,
(i1) (AU B)° 2 A°U B°,

(1ii) Ay , n € N are closed, but | J,, Ay is not closed,

(vi) ANB C ANB.



Solution:
(i) A, = (=%,1) CR, n € N. Then, we have (1, 4, = {0}.

(iii) A, = (=00, —1) C R, n € N. Then, we have |J,, 4, = (—00,0).
(i), (iv) A= {(z,y) e R? | x < 0}, B = {(z,y) € R? | 0 < z}. Then, we have

(AUB)° =R? DR?*\ y — axis = A°U B°

and

ANB=0Cosay=ANB.

2 Limits of functions of several variables

Exercise 2.1. FEvaluate the following limits

. li sin(z+y)
( o 0.0) Y

2 2
(i1) lim  EHruty
(zy)—(0,0) * 7Y

. 20
(i) (w,y%lin(w CES T

w lim 22 492 @’y
() (I»y)—>(070)( v)

Solution: )
(i) The function f(z,y) = % has domain

Dy =R*\ {(t,~t) | t € R}.

The point (0, 0) is an accumulation point of the set Dy (thus, it has a meaning to ask for the limit value
of f at this point). The limit can be evaluated using the theorem on limits of a composed function

F(@,y) = h(g(z.y)), where g(x,y) =z +y and h(z) = =22
For a correct use of the theorem on limits of a composition of functions, we still must first verify
that one of the following holds:

e either on a neighborhood of the point (0,0) we have g(x,y) # 0
e or the function h is continuous at z = 0.

The first case, we can ensure restricting the domain for the function g, i.e. we take Dy := Dy, and
the second continuously redefining the function h at z = 0. Now, we have

lim g(z,y)= lim x+y=0 (because g isa sum of continuous functions),
(w,y)—(0,0) (@,y)—(0,0)
lim h(z) = lim sin(z) =1
z—0 z—0 z
so that )
im sin(z +y) = lim h(g(z,y)) =1
(z,y)—(0,00 T+Y (w,y)—(0,0)




(ii) For the function f(z,y) = %, we evaluate the domain:

Dy =R*\ {(z,y) € R* |z = +y}.

Restricting f on the z-axis (i.e. y = 0) we get

332

On the other hand, restricting f on the y-axis (i.e. x =0), we get
y?
g}lg%f((),y) = ;%Tyg =-L

Thus, the given limit does not exist.
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(iii) For the function f(z,y) = we evaluate the domain:

2zy
242y
Dy =R*\ {(0,0)}.
Restricting f on the z-axis (i.e. y =0), we get
lim f(z,0) =0.
z—0
On the other hand, restricting f on the line x = y, we get

. . 222 2
ligy (e, 2) = g o 5

Thus, the given limit does not exist.
(iv) For the function f(z,y) = (22 4+ y2)*"v" = ¢*'v" (=" +4")  we evaluate the domain:
Dy =R*\{(0,0)}

It is enough to find out the limit ( %Hn( )x2y2 In(z2 + y?). We use the estimate
x,y)—(0,0

0 < 2% In(2? + y?)| < (z* + 22292 + y*) - ‘ In(z? + yz)‘ = (2® +94%)?. ’ In(z? + y2)’




Using the theorem on limits of composed functions (for example L’Hospital rule), for
glz,y) =22 +y* a h(z)=2’Inz

lim g(z,y)=0 and lim h(z) =

(z,y)—(0,0) 204
we get
lim (2?4 y?)?In(z®* +y*) = lim  h(g(z,y)) = 0.
o @ FY) Gy = lim | R(g(@y)

From the squeeze theorem, then we get

lim  2%y?In(z? +9%) =0,
(z,y)—(0,0) v In( V)
thus

1i 2 2ya?y? _ 0 _ 1
(w,y)l—>m(070)(x V) ‘

Exercise 2.2. FEwvaluate the following limits

(i) e S A e

(@y)—(0,1) T =D

zz2—y?z

3 i
(i) (@2 s (L1,1) P97

lim a:2y2
(i) (2) 2 (0,0) 2 H

. b
(i) (2) 5 (0,0) ZH

Solution:
. . V2 —1)2+1— .
(i) For the function f(z,y) = %, we evaluate the domain:

Dy =R*\{(0,1)}.

The point (0,1) is thus an accumulation point of Dy. To get rid of the roots, we use a trick (i.e. the
equality (a — b)(a +b) = a* — b?)

i Va2 + 2+1-1 i Va2 + 2411 a4 (y - ) +141
1m 1m
(z,4)—(0,1) x? + ( — 1) (@)~ (0, x? + ( - 1) \/:CZ (y—12+1+1
= lim Z Ay -1 -2
(z,y)—(0,1) (xQ ) (\/mz 2114+ 1) 2

s . _ rz2— y2
(ii) For the function f(z,y,2) = *2 5=, we evaluate the domain:

Dy ={(z,y,2) €R® | wyz # 1},

thus the point (1,1,1) is an accumulation point of Dy. Considering that the degree of the polynomial
in the denominator is the same as the degree of the polynomial in the numerator, we try to prove that
the limit does not exist.




Restricting f to the line z = y = z (without the point (z,y,2) = (1,1,1)), we get f(z,z,z) =
3 3

-2 —0, thus

3—1

(Ly,zglam(l,l,l) fxy,2) = ilinl flz,z,z)=0.
rT=Yy=z

On the other hand, restricting f to the line z = y = 1 (again excluding the point (x,y,z) = (1,1,1)) we
get f(1,1,2) = Z;:f = z, thus

(I»y,zggl,l,l) f(x’ Y Z) = 21/14)1% f(17 1’ Z) - iL}Hll z=1.
z:y:l

We conclude that the given limit does not exist.

2

2
(ili) For the function f(z,y) = ;z3%;z, we evaluate the domain:

Dy =R*\ {(0,0)},
thus the point (0,0) is an accumulation point of D;. The degree of the polynomial in the numerator is
higher than the degree of the polynomial in the denominator, thus we will try to prove that the limit
exists and it is equal to zero (this value we may choose as a candidate restricting the function f for

example to the coordinates axis).
We use an estimate and the squeeze theorem. The following inequality holds:

[ < Va2 +y? = [|(z, )],

and this important inequality is suitable to prove our limit. Similarly |y| < ||(x,y)||, thus we get

0 I2y2 < H(xay)H2 i ”(m?y)”Q — ||(l‘ y)”Q
2 + y2 - 2 + y2 ’ .
(From the definition of limit, we get that ( %Hn( : |(x,y)||> = 0 and from the squeeze theorem, we
z,y)—(0,0
have
w2y?

1m —_ =
(2,y)—(0,0) 2 + y?

(iv) The difference between this and the previous example is the degree of y in the denominator, but
this implies that now the denominator obtains value zero not only at the point (0,0). For the function

2,2
f(z,y) = ;75, we evaluate the domain:

Dy ={(z,y) € R? |y # —Va?},

and the point (0,0) is an accumulation point.
Restricting f to the line 2 = 0 (without the point (z,y) = (0,0)), we get f(0,y) = 0, thus

lim z,y) = lim f(0,y) =0 .
lim - f(ay) = lm £(0.9)
=0
Therefore, if the limit exists, it must be equal to 0. The polynomial in the numerator obtains zero
value on the axis *+ = 0 and y = 0, while the polynomial in the denominator is zero on the curve
y = —Vx2. At any point (2o, y0) € R? so that ygp = —{/x2 and zg # 0 thus we get
2,2
LoYo
= = +-00.
0

$2y2
22 + y3

lim
(z,y)—(z0,Y0)
O#yo=— /23




Now, if our function f had at (0,0) limit 0, it had to be bounded in some neighborhood of (0, 0), i.e.
it should exists K > 0 and € > 0, so that | -5L7| < K for every (z,y) € U(0,0) N D;.

7 4y3
In the neighborhood U, (0, 0) we also find one points (xq, —{/x2), at which the limit of f is unbounded.
We conclude that the given limit does not exist.

3 Directional derivatives, gradient, total derivative

Exercise 3.1. Find the gradient of the function f(x,y) = e*siny at the point ag = (1,75) and the rate of
change of f at the point ag in the direction of the vector v = (—1,2).

Solution:

The gradient gradfj,, is the matrix of the derivative fl’a0 of the function f at the point ag. A sufficient
condition for the existence of the derivative function of f at the point ag is the existence of continuous
partial derivatives in some neighborhood of the point ag (that is our case).

of of v a V2 V2
gradfq, = (%, (’Ty)‘a" = (e"siny, e cosy)|a0 = (67,67)
The rate of change g%lnro of the function f at the point ag in the direction of the vector v is given by
of V2 V2 V2
Ovjay ~ B0 V= (e o) (F12) = e

Exercise 3.2. Find the unit vector in the direction of the greatest rate of change of the function f(x,y,z) =
ze¥ + 2% at the point ag = (1,In2, 3).

Solution:

af af o
gradfjq, = (aTJ:’ aijc, a—i)\ao = (e¥, me¥,22) 4, = (2,2,1)

The unit vector in the direction of the greatest rate of change of the function f at the point aq is

1 2 21
Toradzo ] e = oz @20 =555

Exercise 3.3. A wvery tired mountaineer climbs up a slope, that is the graph of the function f(z,y) =
e™ +Inz. At the moment he is standing at the point A = (1,1,7) € R3. In which of the two directions

U=(1,2,7) and V =(2,1,7)

(on the tangent plane to the graph of the function f at the point A) should continue climbing, so that he
would have the least effort?



Solution:
For a = (1,1) € R?, f(a) = e, thus A = (1,1,¢). We evaluate the gradient (derivative) of the function

f:
ey L .
grad fian = flay = We™ + —we)jan = (e+ Le)

The equation of the tangent plane to the graph of the function f at the point a is

z:f(1,1)+f|’(1,1)(§j) :e+(6+1,e)(§j) =(e+Dx+ey—(e+1)

The vectors U and V lie on the plane if they are orthogonal to the normal vector to the planeN =
(e+1,e,—1) (e, if U-N =0=V -N.) Thus, we have U = (1,2,3e + 1) and V = (2,1,3e + 2). The
steepness of the climb is determined by an angle which the vectors make with the plane z = 0, thus
arctan( de+1 ) for U and arctan( 3et2 ) for V. The easier ascent is thus in the direction of the

V12422 V12422
vector U.
Notes:

(1) We could use the implicitly given graph ®(z,y, z) = 0 for ®(x,y, 2z) := f(x,y) — z. 56/5000 Then
we got straight as normal vector gradient of ®, N = grad ®4.

(2) If we set u = (1,2) and v = (2, 1), then we have U = (u, f"a(u)) and V = (v, fl’a(v)). Moreover,
if [Ju]| = ||v]| (as in our case), then for the steepness of the climb in the direction of vectors mathbfU
and mathbfV we need only to compare the last component, ie. values f"a(u) and f|/a (v).

Exercise 3.4. Assume that the height of the terrain in R? is described by the graph of fR? — R, f(z,y) =
m At point A given by x =2 and y = 1 we drop a ball. Determine the direction (when viewed from
above, i.e. in R2), in which the ball will roll down. Next, determine whether it is more inclined the tangent
plane at point A or at point B given by x = 0 and y = 1 (i.e. compare angles that these planes form with

the plane z = 0).

Solution:
The ball will roll in the direction of steepest descent, i.e. opposite to the direction of the gradient of f,

2x 4y 4 4
d = — T = T2 2
gra (f)\A < (x2+2y2+1)2 (902+23/2+1)2>|A ( 72 72>

thus in the direction, for example, of the vector ¥ = (1,1) (the same direction is determine by any
positive multiple of this vector).

The normal vector to the tangent plane to the graph of the function at the given point is (%, g—i, —1) .

o 4 4
naA = _57_57_1

B 4
np — 0,_37,—1

with norm [[fia]| = \/Z + 1 and |[ip|| = /% + 1. The normal vector to the plane z = 0 is &= (0,0, 1).

The angles between the planes are given by

We thus consider the normal vectors

and

|ﬁA-€| _ 1

cos(a) = — =
Tl Tl ~ /2

10



and
nip - € 1
cos(8) = 1727 _
. 4
el 1d = 21
Confronting these quantites, we get
? 1 ?
cos(ar) > cos(f) & > & —|— 1 > —|— 1 &
2 49 24
77t
2¢ 7 2
& >ﬁ@773 (2-3)-3%.
Last relation holds because cos(a) > COS(B) and thus o < 8 and at point B the plane is more inclined.

Exercise 3.5. Find the tangent plane to the graph of the function f(x,y) = 2z +y? at the point ag = (1,1).

Solution:
The graph of the function f is {(a,2) € R® | 2z = f(a)}. The tangent plane Tag.1.,) to the graph of f
at the point (ag, fu,) = (1,1,3) is given by the equation

z = f(ao) + grad fiq, - (@ — ao).
We have: gradf,, = (47,2y)|q, = (4,2), thus the tangent plane has equation
z2=3+(4,2)- (z—1,y—1)=3+4(x—-1)+2(y—1)

or
dor + 2y — 2z = 3.

Exercise 3.6. Find the tangent plane to the graph of the function f(x,y) = xy + sin(z + y) at the point
(1,-1,7).

Solution:

The graph of the function f is the set I'y = {(z,y,2) € R3 | z = f(z,y) & (z,y) € Ds}. The tangent
plane T(; 4,.20), to the graph of f at the point (o, yo,20) = (1, -1, —1), where zg = f(xo,%0) = —1is
given by the equation

r—x
z = f(x()?yo) +gra‘df‘(wo,yo) : < y _ y(? ) N

We have:

of of

grad fie,y0) = (8;10 [“)y)’( )= (y+COS(x+y),:c+COS(:E+y)> = (2,0),
Z0,Yo

|@.-1)

thus the tangent plane has equation

z:—1—|—(2,0)-(z:1>:—1+2(a:—1)

or
20—z =3.

11



Exercise 3.7. Find the derivative (rate of change) of the function
(i) f(x,y,2) = 23 — 2%y at the point a = (1,6,2), in the direction of the vector ¥ = (3,4,12),

(i1) f(z,y) =e®cosy+ 2y at the point a = (0,0), in the direction of the vector ¥ = (—1,2).

Solution:
The (directional) derivative of a function f at the point a in the direction of the unit vector ¢ is defined
like

o Hott 0= g0)

OUla  t—0 t

If, on the other hand, the derivative f, of the function f exists at the point a (i.e. the total derivative
exists), then it holds:

() — ~_ Of L 9f
s f‘a(’l)) - gradf|a V= o, @ v + axn‘a Un

where 0 = (v1,...,0,).

(i) For f(z,y,2) = 2% — 2%y and a = (1,6,2), we get
gradf\a = (2$y7x27322)|a = (127 1, 12)

and

of
—-= 12,1,12) =184 .

a’U|a (
If we take the directional derivative, in the direction of ¥, then it is necessary to normalize the vector,

i.e. we use the vector @ = -2 and then we have Bf| = ﬁ of 184

Gl dila — 13-

(ii) For f(z,y) = e”cosy + 2y and a = (0,0), we get

gradfj, = (e” cosy, —e”siny 4 2)|, = (1,2)

and of
-1
- =(1,2)- =
OUa (1,2) ( 2 )
T S af _ 1 9f _ 3
Wlthu-W,thenwehaveﬁla—w-%‘a—ﬁ.

Exercise 3.8. Find the equation of the tangent plane to the ellipsoid 3z s 4y 1 —|— % =1, that
(i) is parallel to the plane 4x + 2y + z = 3,

(ii) cuts on the coordinates axis segments of the same length.

Solution:

When a set M is given as a level surface of a continuous differentiable function (i.e. with an equation
f(z,y,z) = 0), then the tangent plane to M is orthogonal to the gradient of the function f (if the
gradient is non-zero), i.e. the gradient is its normal vector.

In our case, we take f(z,y,2) = % + % + % — 1. So, the normal vector to the tangent plane is

12



20y 2z
f\’ao = grad(f)js, = <2578’ 9) .

(i) The tangent plane must be parallel to the plane p : 4o + 2y + 2z = 3, that has normal vector
n, = (4,2,1). This holds exactly when

2¢ y 2z
(257 gv 9) - grad(f)\ao =\ n, = A (4727 1)
for some A € R. Thus z = 50\, y = 16\ and z = %)\.
At the same time, it also holds that

A A
25 16 ' 9

After substitution, we get 100A2 + 16A% + 92 = 1, thus A = £2/1/473.
The tangent plane we are looking for, must have normal vector n,, thus has equation of the form

4z + 2y + z = ¢, where the unknown value of ¢ € R can be calculated substituting the found point

(20, Y0,20) = i\/iﬁ - (100, 32,9), which the tangent plane must pass through. The result is

do 4+ 2y + 2z = V473

and
do + 2y + z = —V473.

(ii) We follow a similar approach. The plane that cuts on the coordinate axis segments of the same
length, has normal vector n = (1,1,1). Thus,

2¢ 2y 2z
(%7 TG’ 5) - grad(f)luo =A-n=A\- (1? 17 1)
for some A € R. We get A\ = £2/4/25 and the possible tangent planes are
r+y+2z=>5V2

and
x+y+z:—5\@.

Exercise 3.9. Find an equation of the tangent plane to the ellipsoid x% + 2y? + 22 = 1, that is parallel to
the plane p : 4x + 2y + 2z = 0.

Solution:
We use the following Theorem (a consequence of the Implicit Function Theorem) Theorem: Let G be

an open subset of R", f : G — R a continuously differentiable function on G. Let the point uy € G be
such that f(ug) =0 and f'(ug) # 0. Then the tangent plane to the hypersurface (called variety)

M={ueG|f(u)=0 & f'(up)# 0}

at the point ug has equation
F'(ug)(u — ug) = 0.

13



In our case f(z,y,2) = 22 +2y?> + 2?2 — 1 and G = R3. Since for ug = (x,y,2) the derivative
f'(wo) = grad(f),,, = (2z,4y,2z) is zero only for ug = (0,0,0) (a f(0,0,0) = —1 # 0), we can use the
previous theorem, and the normal vector to the tangent plane at the point ug € M is exactly grad(f )‘uo.
This plane is parallel to p, that has normal vector n, = (4,2,1), only if (2z,4y,2z2) = grad(f)|u0 =
A-n, =X (4,2,1) for some X € R, thus (z,y,2) = (2X,A/2,A/2). At the same time, should also hold
that 22 + 2y + 22 = 1. After substitution, we get (2X)2 +2(\/2)? + (A/2)? = 1 thus A = +2//19.

The tangent plane that we are looking for must have normal vector n,, thus equation 4z +2y+2 = c,
where the value ¢ € R can be found substituting the coordinates of the found point uy = i\/% -(4,1,1),

that the plane must contain. The result is

dr 4+ 2y +2z=Vv19

dr 4+ 2y + 2z = —V19.

Exercise 3.10. Find the angle between the surfaces
P2y +22=8 and (-1 +(y—27°+(2-3)*=6

at the point ap = (2,0, 2).

Solution:

The angle between the two surfaces is equal to the angle formed by the tangent planes to the surfaces
at the given point, but, at the same time, this is equal to the angle between the normal lines to the
surfaces (i.e the normal lines to the tangent planes). Like in the previous example, we get

n; = (2%,22},22’)‘% = (47074)

and
nzz(ﬂxflyﬂyf2y%zf3» = (2,-4,-2).

a0

For the angle o € (0, 5), then we have

In; - ny| _0

cosq = ————— =
[ |- [zl

o T
thus, a = 5.

Exercise 3.11. Find the angle between the graph of the functions

flz,y) =In(/22 +y?) a g(z,y) = sin(zy)

at the point (1,0,0).

Solution:

The angle between the graph of the functions is given as the angle between the tangent planes to the
graphs of the functions at the given point, and this is equal to the angle between the normal vectors,
i.e. the gradients. The graphs are given implicitly:
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for f,itis Ty = {(x,y,2) € R} | F(x,y,2) =0 & (z,y) # (0,0)}, where
1
F(l'vyaz) = 5 111(.%2 + y2) -z

and for g we have I'y = {(z,y,2) € R® | G(x,y, z) = 0}, where
G(z,y,z) = sin(zy) — 2.

The normal vectors to the tangent planes are

- T Yy
= d F :< ) 771) = 1;0771
np = grad f(1,0,0) 212 2y 1(1,0,0) ( )
iy = grad G|(1,0,0) = (y cos(zy), x cos(zy), 71)|(1 0.0) =(0,1,-1)

The angle a € (0, T) is given by

- —
nl-ng‘ 1
COSx = 57— 5 17— =

7]l 2] 27

thus o = g

Exercise 3.12. Determine if the function

3

f(:c,y)—{ ngyz ) Ei,z;i(o,m

is differentiable (has a total derivative) at the point (0,0).

Solution:
By definition, the derivative of f at the point ag = (0,0) is the linear function f|/(10 =L:R? %R, so
that I

L fa) = flag) ~ La—ap)

o o — aol

If the derivative exists, then it is uniquely determined by the partial derivatives at the given point:

g :hmw:hmle’
0x|(0,0) =0 t t—0 ¢
oF  _ g QD -JO0 5 0
oy 10,0y t20 t t—0 ¢
For a = (x,y), then we have
z—0
L(a — ap) = (1,0) - < y—0 ) =z.
Thus,
3
_ _ — —*——-0—=x —x?
lim fla) = f(ag) = L(a —ao) _ T - im . l’yg -
a—ag [l — aol| (2.9)—=(0,0) /22 + 42 (z,9)—(0,0) (22 + y2)3/

15



If we now restrict the former result, for example for x = y, we get

2 3

li —XY i I —T
im e =1lm-——r=Ilim—— .
(2.9)=(0,0) (x2 +92)3/2  2-0(222)3/2  2=0 /8. |z
z=y
This limit does not exist, and thus the previous limit does not exist (and for sure it is not equal to
zero, as we needed to prove). The derivative (the total derivative) does not exist at the point (0, 0).

Exercise 3.13. Find the partial derivatives of the function z = f(z,y), satisfying (defined by) the equation
2% — 3wyz = 2, for every (x,y) in the appropriate domain of the function. First consider a general point,

then the point (x,y,z) = (1,1,2).

Solution:
We are not able to express the function z in a simple explicit form, nevertheless, we can find its partial

derivatives. On both side of the equation we evaluate % and a%v using the chain rule (z is depending

on the variable z and y):

02 922 —3zy2) 50z 0z
Ox Ox For YTy
02  0(23 - 3xyz) 50z 0z
0=——=——"F7—"""=32"— — 32z — 3oy —
3y 3y z ay Tz a:yay
and thus we calculate the partial derivatives:
9z _ 2
or 22 —uxy
% Rz
oy 22—uzy’

In order to do so, we supposed that 322 — 3zy # 0. This expression is exactly the partial derivative
with respect to Z of the function ® : R? — R, ®(&,7, 2) = 22 — 37§Z — 2 of three independ variables,
that defines the original equation as <I>($c, y, z(x, y)) =0 (i.e.. implicitly defined function). Thus,

0P

95 = 332 — 3%y .
At the point z(1,1) = 2, that satisfies the implicit equation and at which 322 — 3zy # 0, then, we
get
9 1.2 2
drj1,1) 22-1-1 3
0z 1-2 2

oWy 22-1-1 3~

Exercise 3.14. Find the derivative of the composed function f o g, where

st
(i) g:R?> - R3, g(s,t) = | scost | af:R® =R, f(z,y,2) = 2% +y> + 22,
ssint

16



st
(ii) g:R? - R3, g(s,t) = | et

af:R3—=R, f(x,y,2) =2y +yz + 2x.
t2

Solution:

(i) We can expressed the function h(s,t) = (f o g)(s,t) = (st)? + (ssint)? + (scost)? = s?t? + s? and
then take its derivative 5h O

B (s, t) = (—,—) = (2st? + 2s,25%t
(5:1) Os’ Ot ( )
or, we may choose to use the theorem on differentiation of composed functions:

W (s,t) = (fog)(st)=f'(g(s,t)) o g'(s,t) =

991 991

t S
S i3
(8 B 8 ) | T = a2 et st | <
lg(s,t) & Jgs 9 sint  scost
ds ot
t S

= ( 2st, 2scost, 2ssint ) cost —ssint

= (2st® + 2s,25°t)
sint  scost

where g;(s,t) are the components of the function g. While taking the derivatives, it is necessary to choose
for f the same order of variables as the order of the single components of g; in the matrix-derivative of
g (thus, for example, if we choose to take the derivatives with respect to, in the order, y, z, z, then the
order of the components in the matrix of the derivative of g will be, from the top, g2, g3 and ¢;.)

ii) We follow a similar approach: h(s,t) = (f o ¢)(s,t) = ste® + t2et + st3
(ii) pp g

Oh Oh i ,
B (s,t) = (8—7 E) = ((t + 5t2 +13)est + 13, (s + 5%t + 2t + st?)e’ + 35t2)
S

or
t s
W(s,t)=f'(g(s,t)og'(s,t) =(y+z z+z, z+y )‘g(s’t) A test sest | =
2t
t s
= (et +t3 st+1t?, et4st )| tet st | =
0 2t

= ((t + 512 +13)et + 13, (s + 5%t + 2t + st%)et + 3st2).

Exercise 3.15. Find the derivative of the composed function f o g, where

I2+y2

(o)

FIRI SR f(x,w:( = )

g:R* = R% g(a,f)

Solution:

17



We indicate the component functions of f as fi(x,y) = zy and fo(z,y) = x? + y2. For the matrix
representing the derivative of f, we have

oh  9h
f/ — ox 6Jy _ ( Yy € )
i )=a o
thus, in each row we find the gradient of the single corresponding component.
Similarly, for g; (e, 8) = cosa and ga(av, 8) = — sin(a3) we have

g = Za% % _ ( —sina 0 ) .
sz aig —Bcos(af) —acos(af)
Thus, the derivative of f o g is

(fog) = fl,00 = ( Loy >

—sina 0
T= cosa ) . —B COS(CYB) —Q COS(O&ﬁ) B

y=—sin(af

_( —sin(ap) cos —sina 0 _
- 2cosac —2sin(af) )\ —Bcos(aB) —acos(aB) |
B sin(a3) sina — B cos(af) cos a —acos(af) cosa
| —2cosasina+ 28sin(af) cos(af) 2asin(af) cos(af)

_( sin(aB)sina — Bcos(af) cosa  —acos(af) cos

o —sin(2a) 4 Bsin(2a3) asin(2a3) ’

The components can also be evaluated using the chain rule, directly, without evaluating the product
of the two matrices. The components of f o g are (f og);, = f; (:r(mﬁ),y(a, B)), where the variables x
and y are dependent on « and S, as z(«, 8) = g1(a, 8) and y(a, 8) = g2(e, 8). The matrix representing
the derivative of the composed function has the form:

% %
! «
(fog) =1 ogoms a(foms

da B

and, from the chain rule, we have for example

Ifog) df2(cosa, —sin(af)) _Ofy Ocosa | Ofy O(—sin(afp))

O O T 9r  Oa +87y. O

=2z (—sina) 4+ 2y - (—fBcos(af)) = —2cosa - sina + 2Fsin(af) - cos(af) .

: . o _ f@+y,2)
Exercise 3.16. Find the derivative of the function ®(x,y,z) = f(z
y?

y >,wheref:R2%Risa

continuous differentiable function.

Solution:
We indicate the components of the function ® as ®; and ®5. We need to find the matrix

[ok SN ST
I ox 0 0z
(D - Py 64?2 fokii .

0z Jy 0z

In evaluating each entry, we use the chain rule. We indicate the variables of f, for example as f(u,v).

18



Now, we can write

e = LG = e T Gty -
:%(z+y,z)-1+%(x+y,d-0:gjj;(l’+yaz)
and similarly
%?:W gf(x+y, 2)-1 +%(x+y32)-0=%($+yvz)
65{;1:W:(;{(xJFy’Z)'OJFg(xJFy’Z)'l:gij(ery’Z)

for the second row, we have

af (5. 4)
e OGS _0f(e ) 401 (s ) L0 )

of(5:%)
- MDA (<) EE Y

M)g_af(w_af(x y).0+g(£7g>.< y>: y_af(x y)

dz 09z  Ou\y'z v 22 22 Ov\y' z
Thus, all together, we get
Lty (@ +y,2) L +y,2)
=\ 1. ﬂ(z g) LJ(E g>+lﬂ<z g) _y ,Bf(z E)
y 0 Yz 29 Yz zO0v\y’ z z2 Ov\y’z

4 The Taylor’s polynomial, local extremes

Exercise 4.1. Find the Taylor polynomial of second order for the function f(x,y) = e cos(z —vy), at

the critical point ag = (0,0), and use it to determine if the function at ag has a minimum, a mazimum or a
saddle point.

Solution:

The Taylor polynomial of degree 2, that approximates the function f at the point ay € R”, is defined
by:

Talao +h) = f(ao) + f'(a0)h + 5 f"(a0)(h, h)
where h = (hq,...,h,) € R™.

We have: s o
f|(0 0) (2xew +v sin(x — y), 2ye” Y —sin(x — y)) 00 = (0,0)
thus, (0,0) is a critical point for f,
oo 9>+’ n 42I26;3:2+y2 + cos(z — y) 2 412:y63:2+y2 - 6(2)8(13 — ) _ 3 -1
(0,0) 4£yem +y° COS(JZ _ y) 2¢7 +y + 4y2€m +y + COS(Z‘ _ y) ©0.0) —1 3
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For h = (hy, hy) € R?, we have

1 3 -1 h 3 3
Ta) = 10,00+ flonh+ g fomhb) = gta) (2 50 ) () = 30— o 203

By Sylvester’s criterion (A; =3 > 0, Ay =8 > 0), the matrix f(’(’) 0) Is positive definite, thus, at the
point a = (0,0) there is a local minimum.

Exercise 4.2. Find the Taylor polynomial of second order for the function f at the point ag:
(i) f(z,y) =e*¥ —y?, ap = (0,0),
(i1) f(x,y,2) = 2y?2°, ap = (1,2,1).

For the function in (i) determine if the function, at the given point, has a point of minimum, mazimum or
a saddle.

Solution:
(i) We have

f|/(0,0) = <2y62w7 2ze*™ — 2y) 10,0) = (Oa 0)

thus, (0,0) is a critical point for f,

4y2e?my 2e2*Y 4 4xye?*y 0 2
f(() 0 2xy Ty 2 2xy = _
2e2%Y 4 4xye? dx“e 2 2 2
1(0,0)
For h = (hy, ha) € R?, we have

To(h) = £(0,0) + flooh + 3 f‘(oo)( h) =1+ - (hl,h2)< g _22 ) ( Z; ) =1+ 2hyhy — h3.

The quadratic form
g(h1,ha) = 2h1ha — h3 = ha(2h1 — hy)
of the second derivative is indefinite (for example g(1,1) =1 > 0, and ¢(0,1) = —1 < 0). At the point
a = (0,0), f has a saddle.
(ii) We have
Flag) = (y?2°, 20y2°, 3ay®2?) 10, = (4,4,12)

and
0 2923 3y?22 0 4 12
f(ag) = | 29y2% 2223 6ayz? =| 4 2 12
3y22%  6ayz® 6ay’z 2 12 12 24
Thus
h1 1 0 4 12 hy
Tg(ao —|—h) = 4+ (4,4, 12) hg §(h1,h2,h3) 4 2 12 hQ =
hs 12 12 24 hs

= 44 4hy + 4hy + 12hg + 4hyhy + 12h1hs + b3 + 12hohs + 12h3.

Exercise 4.3. Find the Taylor polynomial of second order for the function f at the point ag: f(x,y,2) =
xzeY cos z, ag = (0,0,0).

20



Solution:
We have
f'(ag) = (&Y cos z, xe? cos z, —xe? sin z) 4, = (1,0,0)
and
0 eY cosz —eYssinz 01 0
f(ag) = eYcosz we¥cosz —xeYsinz =100
—eYsinz —xeYsinz —xeY cos lao 0 0 O
Thus
Tg(ao + h) = h1 + hihs.

Exercise 4.4. Find the Taylor polynomial of second order for the function f : R? — R

f(z,y) =e™ —2xy

at the point a = (0,0) and use the found polynomial to determine if the function has at this critical point a
minimum, a mazimum or a saddle point.

Solution:
The function is symmetric in x and y, this simplifies the calculations.

floo = (v —2p.2e™ —22) = (0,0)

- y2e™y e 4 xye®¥ — 2 _ 0 -1
(0,0 erv + rye™V — 2 x2emy 10.0) -1 0

For h = (h1, hs) € R? we have

1 1 0 -1 h
Ta) = 0.0) + Flooh + g5 oo b = 1 30t (4 50 (2 ) =1 e
The quadratic form
Q(h) == f\/(lo,o)(ha h) = —2hyhy

of the second derivative is indefinite (for example Q(1,1) = —1 > 0 and Q(—1,1) = 1 < 0). At the point
a = (0,0) we thus have a saddle.

Exercise 4.5. Find and classify the local extrema of the following functions:
(i) f(z,y) =2° —y® — 22y +6

(ii) f(x,y) = 222 + 3zy + 4y — bz + 2y

Solution:
(i) The given function is a polynomial, thus has derivatives of every order. We look for critical pointsof
f, i.e. points where the given function has zero gradient (a necessary condition for a point to be an

extreme point).
f|/(3:,y) = (3:62 — 2y, 73:{/2 — 2.’,17)
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Thus, f|/(93,y) = 0 exactly for 322 = 2y and —3y? = 2z, that gives the points (z,y) = (0,0), or

(x,y) = (—%, %) At the found critical points, we evaluate the second derivative of f.

nw [ 6z =2
Ny = ( -2 —6y )

For (z,y) = (0,0), fl(o0) = ( _02 _02 Thus, for h = (hy,h2)T € R2we have fi(0,0)(m,h) =
—4hyhe and this is an indefinite form. Thus, f has a saddle at the point (0,0) .
For (z,y) = (—2,2), fll(/_g 2y = ( :;1 :i ) By Sylvester’s criterion (A; = —4 < 0, Ay =
373
16 —4 = 12 > 0) the form is negative definite, thus f has a local maximum at the point. This maximum
is not global because the function is unbounded from below (for example, we may consider the restriction
f(z,0) =23 +6).

(ii) We proceed like in the previous case:
Flwy) = (42 +3y — 5,32 + 8y +2)

Thus, f|/(w,y) = 0 exactly for (z,y) = (2,—1). The second derivative is

s (43
faa = ( 3 8 >
and, by Sylvester’s criterion is positive definite, thus, at (2, —1), f has a local minimum f(2,-1) =

—6. This minimum is actually a global minimum, and we can prove this, for example, by completing
the square:

f(z,y) = 22% + 3zy + 4y* — bz + 2y =
3 9 25
:2(m2+2-x-1y+2-x~(—7)+2~fy-(—f)+(fy)2+(—*)2)+fy—§y2—f+4y2+2y:
3 5\2 23 23 25 3 5\2 23
R =
T+ —y gyt Y x+4y4—|—8(y+) 6
Thus, really f(z,y) > —6 and the equality holds for x—i—%y—% =0andy+1=0,or (z,y) = (2,-1).
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5 Global extrems and extremes of functions with constraints

Exercise 5.1. Find the absolute mazimum and minimum of f(x,y) = x —y+ 3 with constraint 3z> + 5xy +
3y% = 1.

Solution:
We use the following theorems:

Theorem: A continuous function on a closed bounded (called compact) set attains its maximum
and minimum value.

Theorem: Let U C R™ be an open set k < nand f: U — R and ® : U — R* are continuous
differentiable functions on U. We define

M={acU|P)=0& (I)ia is regular}.

If ag € M is a local extrema of the function f restricted on M, then there exist A1,..., A\x € R (called
Lagrange multipliers), so that

k
f|la0 = Z )"L : (@;)\ao’
=1

where ®; are the components of the function @, i.e. ®(a) = (®1(a),...,Pr(a)).

(Regularity of the derivative means that the matrix representing the derivative has maximal rank,
thus rank &, i.e. its row are linearly independent. The set M is then called a manifold and it is possible
to assign it a dimension - using the implicit function theorem - and namely dimM = n — k. The
dimension is then equal to the dimension n of the original space R™ minus the number k rank of the
derivative of ®.)

In our case, we set U = R? and ®(z,y) = 322 + by + 3y — 1. Since
(o) = (Gx + 5y, 5 + Gy)

then @T(x y) s not regular (i.e. in this case @, , = 0) exactly for (z,y) = (0,0). Thus, it cannot
happen that ®(z,y) = 0 and @]

l(@y) = 0. Thus, at every point of the set

M = {(z,y) € R* | 32 + 5zy + 3y* = 1}
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we have regular <I>I(x ) For the point a = (z,y) € M, that is a local extreme of f on M, there exists
A € R so that
(1,-1) = f"a = )@ia = /\(61‘ + by, bx + Gy)

and
322 + 5xy + 3% = 1.

Summing the first two equations, we get * = —y, and, after substituting into the constraint, we get as
possible extrema:

(1,-1), (-1,1)

and the function attains there values

f(1,-1)=5, f(-1,1)=1.

We still need to find out if the set M is bounded (the closure of M follows from the fact that
M = ®~1({0}), that means that M is the pre-image of the closed set {0} under the continuous function
D).

Completing the square

2 9 5y2 11,
1 =32 4 5zy + 3y 23(.1?—|-*y) + =y
6 12
we find out that we are dealing with a bounded set (it is an ellipse (rotated)). This also follow from the
fact that the quadratic form Q(z,y) = 322 + bzy + 3y? is positive definite (use Sylvester’s criterion).
The continuous function f, on the closed and bounded set M attains its maximum and minimum at
the points (1,—1) a (—1,1).

Exercise 5.2. A circular disk 2% + y* < 1 is heated at the temperature T(x,y) = x> + 2y?> — x. Find the
hottest and coldest point on the disk.

Solution:
We use the same approach as in the previous example. We look for the extrema of T on the closed
bounded set A = {(z,y) € R? | 22 + y? < 1}. We separate the search of the local extrema on the open
set

A° ={(z,y) eR? | 22 +¢* < 1}

and the extrema on the constraint
OA = {(z,y) e R? | 2? +¢* =1}

If a = (x,y) € A° is an extreme of T on A, then, it is also an extreme of T on A°. Thus, it must hold
that
T, = (2z —1,4y) =0

=

it follows that a = (%, 0), and then really a € A°.
If a = (z,y) € A is an extreme of T on A, then it is also an extreme of T on (the constraint)
0A = {(z,y) € R? | ®(x,y) = 0}, where ®(x,y) = 2% + y*> — 1. Thus, it must exists A € R, so that

(2x — 1,4y) = T|/a = /\<I>Ta = \(2z,2y)

and
2?42 =1.
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S

3
2

Ao, (1.0), (<1.0), (<1 By L)

2 27 2 2 2

Since T attains on the (closed and bounded) set A its extrema, comparing the values of the function

We get a = +(1,0) or a = (—3,+
are the points

). Now, we know that the only possible candidates to be extrema

2 D311

T(l,o)z—i, T(1,0)=0, T(-1,0)=2, T(—2,7 _ 2 o

2

we get that T attains its minimum at (1,0) and maximum at (—3, :t@)

2

Exercise 5.3. Find the absolute minimim and maximum of the function f(x,y) = ¥?> — zy + y* on the set

|z + |y] < 1.

Solution:
The set A = {(x,y) € R? | |z| + |y| < 1} is a square and it is obviously bounded and closed (is the
pre-image of the closed interval (—oo, 1) under the continuous ¥(x,y) = |z| + |y|)-

We again separate the case of finding the local extrema of the given function on the open set

A° = {(z,y) e R? | |z[ +|y| < 1}
and the case of finding extrema on the constraint
0A = {(z,y) € R? | |z[ + |y| = 1},

that this time we cannot express using a condition involving a differentiable function. The constraint is
formed by four open segments (the sides of the square) and four points (the corners of the square). We
may simplify our search using symmetries ¢ : R? — R? that preserve both A, and the given function
f. So, it must hold that p(0A) = 9A and fop = f.

WE may choose any of the following three (non-identical) symetry:

(z,y) = (—z,—y) (symmetry with respect to the origin)

(x,y) — (y,x) (symmetry with respect to the line x =y)
(x,y) = (—y,—x)  (symmetry with respect to the line x = —y)
Extreme on A°:

f" (22 — y,2y — ) = 0 only for a = (0,0) € A°, with value f(0,0) = 0.

a =

Extreme on 0A:

Due to the symmetries, it is enough to find the extreme on
U = {(z,y) €R*| 2 >0, y > 0} with constraint ®;(z,y) =z +y —1

and on
Uy = {(z,y) €R?| 2 >0, y <0} with constraint ®y(z,y) = —y — 1

i.e. the sides of the square A without the ending points (and then just one vertex (1,0) of the squre A
like a single constraint).
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For extreme on Uj, it must exists A\; € R so that
(2$ - Y, 2y - .T) = f\/a = Al@ll\a = )\1(17 ]‘)
and
r+y=1,
thus (z,y) = (2, 2) € Uy and f(2, 2) = i.
similarly, for an extreme on Us it must exists Ay € R so that
(22 —y,2y —x) = fj, = APy, = Aa(1, —1)
and
r—y= 17

thus (z,y) = (3,-1) € Us and f(3,—3) = 2.

It remains to consider the point (1,0) Where the function has value f(1,0) = 1.

Thus, the function attains its minimum at the point (0,0), and its maximum at the vertexes of the
square (that we obtained from the point (1,0) using the symmetries).

Exercise 5.4. Find the extrema of the function f(x,y,z) = x —y + 3z with constraint 2 + y* + 42% = 4.

Solution:
We use the same approach as in the previous example. We set ®(z,y, 2) = 22 + y? + 42? — 4. Since

l(ey,2) = (27,2, 82)

then q)l(w = 0 exactly for (z,y,2z) = (0,0,0), that, on the other hand, cannot satisfy the constraint.
Thus, at each point of the set
M = {(z,y,2) € R | 2% + y* + 42* = 4}

we have (I)T(r y,2) # 0. For a point a = (z,y,2) € M, local extreme of f on M, it must exists A € R so
that
(1,=1,3) = fj, = 2|, = A\(27,2y,82)
and
2?2 +y? + 422 = 4.

Thus, it must hold A\ # 0, and evaluating

and substituting into the constraint, we find the solution a = :I:\Qﬁ(él —4,3) and A = :I:‘ﬁ. Since f
attains its extrema on M (since M is bounded and closed), the found points are the (absolute) extrema
and the function attains there value f(a) = £2v/17.

Exercise 5.5. Find three positive numbers with mazimal product and given fized sum equal to 100.

Solution:
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We are looking for positive numbers, but in order to use the theorem on continuous functions attaining
their maximum and minimum it is necessary to work with a closed bounded set. We will thus look for
points of maximum of the function

f(z,y,2) = wyz

on the set
A={(z,y,2) €R® | 2,y,2>0 & =+ y + z = 100},

(That is a triangle with its boundary), i.e. we look for non-negative numbers. The set A is obviously
closed and bounded.
We distinguish again the search of the extrema on the open set

U:{(x,y,z) GRB | l‘,y,2’>0},

that is, on the set ANU = {(z,y,2) € U | ®(z,y,z) = 0} with the constraint ®(x,y,z) = x+y+2z—100
(the triangle without its contour) and on the set A\ U (the boundary of the triangle).

On the boundary of the triangle, the function f has value zero and thus it attains here its minimum
(because f is non-zero on the remaining part of the set A).

For a point a = (z,y,2) € ANU, extreme of f, then it must exist A € R so that

(yz,2z,2y) = fl, = A®|, = A(1,1,1)

and

x+y+z =100,
thus a = %(1, 1,1) and f (%, %, %) = (%)3 and this point is the only point of maximum of the
function f on A.

Exercise 5.6. Find the smallest and the biggest value of the function f(x,y,z) = xyz on the set M defined
by the conditions

rT+y+z=>5 and Ty +yz + zx = 8.

Solution:
This time we have two constraints and it is necessary to prove their independence (on the points of the
set M), i.e. the linear independence of the gradients of the constraints at corresponding points.
We set
Oy (x,y,2)=x+y+2z—5

and
Dy (z,y,2) = 2y + yz + 22 — 8.
Then, we have M = {a € R3 | ®1(a) =0 & ®3(a) = 0}.
M is closed:

The sets {a € R? | ®;(a) = 0} represent the pre-image of the one point (thus close) set {0} under
the continuous functions ®; and, thus, are closed. The set M is their intersection, thus it is also closed.

M is bounded:
We may solve for one variable in the first equation (for example z = 5 — 2 — g), then substitute into
the second equation and rewrite it completing the square:

zy+(@+y)5-—z—y)=8
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otherwise, using a more elegant approach:

52 =(x+y+2)°? =2+ + 22+ 2ay+yr+ax) =2+  +22+2-8
2 +y? + 22 =52 -2.8(=9).
In either case, we see that the variables are bounded, thus the set M is bounded.

independence of constraints:
We need to prove that, for a = (z,y, 2), it holds:

D1(a) =0 & Py(a)=0 = grad(®1);, and grad(®z)|, are linearly independent.

We have
grad(q)l)m = (1, 1, 1)
grad(®2)|q = (y + 2,2 + 2,2 + y).

These vectors are linearly independent exactly when y +z =z+xz =2+ vy, i.e. whenz =y =z. If
it must hold that ®;(a) = 0 and ®2(a) = 0, then we get that 3z = 5 and 322 = 8, that is impossible.
For points in M, we really have independence of constraints .

Now, finally, we may use the Lagrange multipliers method:
For a point a = (x,y,2) € M, absolute (and also local) extreme of f on M, there exist A\, u € R so
that

(yz, zz,xy) = grad(f)|, = A - grad(®y)|q + p - grad(Pa) ), = AM(1,1,1) + pu(y + 2z, 2 + 2,2 + y)

r+y+2z=5 and zy+yz+zx=_8.

If we subtract the first two equations

yz=A—p(y+2)
zx =X — u(z +x)

we get z(y —x) = pu(y — x), that gives the condition x = y or z = p. In a symmetric way, we get the
condition y = z or x = p. From this, it easily follows that either x =y, or y = z, or x = pu = 2, i.e. two
coordinates are always equal. We solve one case, and we get the rest with a permutation of coordinates.

For example, from the condition x = y, substituting into the constraints, we get the solutions
(z,y,2) =(2,2,1) or (x,y,2) = (%, %, %) It is not necessary to evaluate the values of the parameters A
and p, the possible candidate points can only be:

a=(2,21),(1,2,2),(2,1,2) where f(a)=4

(44T (4T 4\ (T44 here () — 12
“=\3'33)'\3°33)'\33°3) W U= 59

Since the function f is continuous and the set M is bounded and closed, f attains at the first point

its minimum and at the second its maximum (because % > 4).

and
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Exercise 5.7. Find points on the ellipse M : ””7‘2 + y9—2 = 1 with maximal and minimal distance from the line

p: 3x+y—9=0.

Solution:
We may solve the exercise in several ways:

(1) We may use the function that explicitly expresses the distance of the point (x,y) € R? from the

line with given equation ax’ + By’ +v = 0, and thus f(z,y) = %
(03

Deriving the formula: We consider the R3 case (the R? case is analogous). Consider the plane p in R3 with equation
ax’ + By’ + vz’ + 3§ = 0. Tts normal vector is n = (a, 8,7) and the equation, for the point a’ = (2,7, 2’) € R3, then can
be written using the scalar product as n - a’ = —§. We now choose a certain point b € R? on the plane p. The distance of
the point a = (x,y, z) € R3 from the plane p is now given by the length of the orthogonal projection of the vector a — b in
the direction of the normal vector n, thus
n

‘(afb)-m

Since the point b is on the plane p, it holds n - b = —§. We can thus write

'(afb)-i _Ja-n—=b-n| |a-n+d] Jazx+By+yz+9|
Il Il Il Va2 + B2 +42

We then look for the maximum and minimum of the function
Bz 4y -9
A /32 + 12

with constraint % + % = 1. Since f is not differentiable everywhere, we can help ourselves in one of
the following ways

f(z,y)

e we choose to look for minimum and maximum, instead of f, of the function

o(e.y) =10+ (f(2.9))" = (e +y -9

(we simplify the form of f and deal with a simpler function with ”equivalent” corresponding point
of maximum and minimum)

e we realize that M has no intersection with the line p, that means that M lies all in one of the open
half-plane determined by p (since M is a connected set - it is arch-wise connected). In this case,
the expression 3x + y — 9, at every point of M is always positive or always negative. Looking for
the extrema of f is then equivalent to looking for the extrema of the function

h(z,y) =3x+y—09.

We choose the latter way.

For points on the ellipse M, the given constraint ®(z,y) := % + %2 — 1(=0) is actually grad(®) =
(5, %’) # 0. For a point a = (x,y) € M, absolute extreme of h on the ellipse M, there exists A € R so
that 0

3. 1) = grad()o = X grad(@), = A (5. %)
and ) )
£ Y
Y
4 + 9
;From the first two equations, we get
T 2y
AL =30
2 9’
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thus A =0, or y = %x.
If A =0, then 3z +y — 9 = 0 and thus we look for the intersection of the ellipse with the line p, that
we know is empty.
Thus, it remains the case y = %x, that, after substituting into the equation of the ellipse, gives the
equation:
2 (32)° 5,

1= — -
1779 16"
thus the points (z,y) = £ (is’ %) At these points, the function f, distance from the line, attains
9-3v5 9+3v5
values 710 and J0

(2) We may use an ”intuitive” approach, that is just a similar version of the previous method:
Proposition: If the set M (defined by the equation) is

e closed,

e bounded and

e has a tangent at every point,

then, at points of M, that are closest or farthest from p, the tangent line must be parallel to p .

In our case, the ellipse M is a level surface of the function ®(z,y) := %2 + yg—z — 1, so, the normal
vector orthogonal to the tangent at the point @ = (z,y) € M is the gradient of the function ®. We
are looking for points a = (z,y) € M, at which the normal vector to M is a multiple of the orthogonal
vector to the line p. Then, there exists A € R so that

(; 25) = grad(®)j, = A~ (3,1)

and ) )
£ Y
—+==1.
4 + 9
It is not a surprise that, from the first condition, we again get the equation y = %x and thus the

same solutions as in the previous case.

Observation: Let’s analyze what could happen if we had not guaranteed all the previously mentioned assumptions
on the set M, for whose points we evaluate the distance from the line p with the method of the tangent:

e if M has tangent at every point and is bounded, but IS NOT closed: as such M, it is enough to take our ellipse,
from which we have taken away exactly those extreme points (even if, formally, from our method we would get
them, those extrema are not properly contained in the set).

e if M has tangent at every point and is closed, but IS NOT bounded: as such M, it is enough to take an hyperbola
with asymptote p (now, no extrema can exist).

e M is bounded and closed, but DOES NOT admit a tangent at every point: as such M, it is enough to take a
properly twisted triangle) (extrema now exist, but with the tangent method we will not find them).

(3) We may use a method that can be applied to find the distance to a general body in the plane (or
in space). It is generally harder to solve the final equations, but, in our case, there will be no problem.
Let’s consider the function distance (squared) of two points (z,y) and (u,v), as

h(a;y,u, 'U) = ({L‘ - u)2 + (y - U)2
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and we will look for its extrema under the conditions (constraints) % + % =land 3u+v—9=0.
Since one of the conditions defines a non-bounded set (it is actually the line p), then the maximum of
the function does not exist, and the method is used just to find the minimum (we will further justify
this statement).

We have two constraints )

r 1
1

y2
q)l(xayauvv): +§_

and
Dy (z,y,u,v) =3u+v—9

with gradients

x 2
grad(q)l)m = <27 57050>

grad(®2)|, = (0,0,3,1)
where a = (z,y,u,v). Let’s indicate

K ={acR*| ®(a) =0 & Py(a) = 0}.

For points a € K, the gradients are evidently linearly independent, and for points that are extrema of
f on K there exist A\, u € R so that

2
(22 = w),2(y = v),2(u ~ 2),2(v — y) ) = grad(k)ja = A- (;C gy,o,o) +p-(0,0,3,1)
and ) )
x Y 0
4+9—1 and 3u+v—9=0

(that is, we have 6 equations in 6 variables!). Fortunately, the equations are rather simple. Subsequently,
we get
T
)\5 =2(z—u)=—-3u
2y
)\j =2(y—v)=—p

thus again the equation A (% - Qy) = 0, where the case A = 0 again has no solution. the rest, again

3
leads toZ
(21.1) = < 4 3 >
1, Y1 \/57 \/3

and with the help of the equation  — u = 3(y — v) we calculate the corresponding points on the line

(g, v) = (27\/5—9 9\/5+27>

10v5 7 10v5

( - 27vV549 9v5 —27
B RET ATV I

For the values of the function at points a; = (z;,y;, us, v;), we have

h(a1) < h(az).
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The set given by the condition K is closed, but it IS NOT bounded. On the other hand, for a € K
and ||a|| — oo also the values h(a) go to infinity (because the ellipse is bounded). Thus, it is enough
to take a sufficiently big ball B so that, on the set K N (R*\ B), the values of h are bigger than, for
example, h(az) + 1. Moreover:

e On the closed and now bounded set K N B, the continuous function A attains its maximum and
minimum.

e On the set K N 9B, the values of the function h are bigger or equal to the value h(as)+ 1 (thanks
to the continuity of h and thanks to its values on K N (R*\ B)).

e On the set K N B° (due to the fact that the set B° is open) then, we can (and we have actually
done it already ) use the usual method of finding the extrema using Lagrange multipliers. The
result are the points a; and ag (that must evidently lie in KN B° due to the value of the function
there: h(ay) < h(az) < h(az) +1).

e The absolute minimum of the function A on the set K N B, thus, CANNOT occur on the ”"border”
of K N OB because there the function is "too big” and it can only be at the point a;. At the same
time, also on the set K N (R*\ B) the function is "too big”, and the point a; is really the point of
absolute minimum of the function A on the original set K.

This is how a correct proof must look like, when we must justify that the found point is a point of
minimum when the set given by the condition is not bounded. On the other hand, we observe that the
function ”at infinity grows to infinity”.

And what about point a3? In order to find out what is going on at this point, we would need a
further investigation, involving higher derivatives. Intuitively, it seems that the function has a saddle
there, but it would be complicated to try to prove it. The third method is useful really just to find the
distance from the set (the minimum of the function h).

Exercise 5.8. Find the distance of the parabola M : y = 2% from the linep: y =z — 2.

Solution:
We can use any of the previous methods, but we must realize that a parabola is not a bounded set (even
if it is closed and has a tangent at every point). Fortunately, the function representing the distance of
points on the parabola M from the line p, even now, ”at infinity grows to infinity”. The minimum of
the function distance must be attained at a point of M, and there the tangent line must be parallel to
the line p.

The angular coefficient o € R of the tangent at the point a € M, that is the graph of the function
g(z) = 22, can be found using the derivative of this real function , i.e. o = -1 (2?) = 2z. The angular
coeflicient of the line p is 1. Thus, from 2z = 1 we get © = % and, therefor, y = 22 = i.

The distance p of the point (z,y) = (%, %) € M from the line p: 2’ —y' —2 =0 is, from the general
formula:

polemy=2d_l5-5-2 _7v2
V12 +12 V2 8

Exercise 5.9. Find the smallest and the biggest value of the function f(x,y) = 2z —y+ 1 with constraint
22+ 2z + 4% = 0.
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Solution:

We use the method of Lagrange multipliers for the circle M = {(z,y) € R? | g(z,y) = 0}, where
g(z,y) =22 + 22 +y? = (x + 1) + y2 — 1. For an extreme value a = (x,y) in M there exists A € R, so
that

(2,-1) = fl, = Mgl = A+ (20w + 1), 29)

and
(x+1)2+9y*=1.

We evaluate z and y as functions of A and we substitute into the constraint. We get A = :I:% and
candidates for extrema are:

-1, ==
) 5

with values

The set M is closed and bounded and the continuous function f at those points really attains its
maximum and minimum.

Exercise 5.10. Find the mazimum and minimum value of the function f : R? = R,

flzy) =a° —y* +2zy

on the circle % + y* = 4.

Solution:
We use the method of Lagrange multipliers for the circle M = {(z,y) € R? | g(z,y) = 0}, where
g(z,y) = 2% + y? — 4. For the extremes a = (x,y) on M there exists A € R, so that

(21} + 2y7 _2y + 23:) = f|/a = )\g|la =A- (21"722/)

and
22+ y2 = 4.

These equations thus indicate that we are looking for a vector a = (z,y)T so that ||al| = 2 and

(L5606

This system has non-trivial solutions only if the determinant of the matrix associated to the system is

equal to zero, i.e. —(1—X)(1+ ) —1 =0, thus A\ = £v/2. We are actually searching for the eigenvalues

of the matrix (1 1) and its eigenvectors with norm 2.

For A = V2 we get:
ap=+\2+V2 - (1,vV2-1)

f(al) = 4\/5

az =+\/2-v2 - (-1,V2+1)

and function value equal to

For A = —/2 we get:
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and function value

flag) = —4v2.

The set M is closed and bounded and the continuous function f at those points really attains its
maximum and minimum.

Exercise 5.11. On the plane 2z +y — z = 1 find a point such that the sum of the squared values of its
distance from the points A = (1,1,1) and B = (2, 3,4) is minimal.

Solution:
We use the method of Lagrange multipliers for the plane M = {(z,y,2) € R? | g(z,y,2) = 0}, wher
g(z,y,2) =2z +y — 2z — 1 and the function

flay,2) = (@ =1+ =1+ (=1 + (= 2)* + (y = 3)* + ( — 4)?

representing the sum of the square of the distance of the point (x,y, z) from the point A = (1,1,1) and
B =(2,3,4). For an extreme a = (x,y, z) on M there exists A € R, so that

(2e = 9).2(y = 9),2(:=5)) = ff, = Mgl = A+ (2.1, -1)

and
20 +y—z=1.

We get A=—32 and a = (3,42, %7) and the function has there value f(2, 12, 13—7) =2
To be sure that the function attains its minimum at this point, we would need (apart from the
closeness of M) its boundedness, that we don’t have. We thus make the following estimate. For U € R3,

from the triangular inequality, we have
2 2
J@) = U= AP + U = BIP = (W0l = 141 )"+ (101 = 1Bl )" = +o0

for ||U]| — +o0o. Thus, there exists K > 0 so that, for every U € R? satisfying ||U] > K we have
fU)> fla)+1=% +1.

Therefore:

- on the set My = M N{U € R®| |U|| > K} the function has always value at least f(a) + 1.

- on the set My = M N{U € R® | ||U|| < K}, that is closed and bounded, the function attains
its minimum. This cannot be attached to the edge (where the value of the function is again at least
f(a) + 1), therefore it can only be in the found point a = (g, 1?0, g), that must necessary lie, due to its
function value f(a), on the set M.

We conclude that the function f actually gains in M its (unique) minimum value at the point

5 10 17
).

a=(3% 3

Exercise 5.12. Find the minimum and mazimum value of the function f(x,y) = 6 —4x — 3y with constraint
22 +y? =4y — 2.

Solution:
The constraint (z + 1)? + (y — 2)? = 5 is the equation of a circle. We use the method of Lagrange
multipliers. For an extreme a = (z,y) on the circle, there exists A € R, so that

(—4,-3) = fl, = \®|, = \- (2(x +1),2(y - 2))
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and
(x+1)*+(y—2)* =5

We express z + 1 = —% and y — 2 = —% and substitute into the remaining equation. We get A = ié
and candidates to be extremes of the function are:
4 4
(_ﬁ_L_ﬁﬁ), (ﬁ_l,%ﬁ)
5 5 5 5
with corresponding values

5vV54+4, —5V5+4.

The circle is closed and bounded and the function is continuous, thus the function attains its minimum
and maximum at these points.
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6 Double integrals

Exercise 6.1. Change the order of integration in the following integrals:

T sinx

(Z’)g Of f(z,y) dy dx

22—z

1 x
(z'i)ofoffxy dydx—i—fffxy ) dy dx

2a V2ax
(iii) [ [ f(z,y) dy dz, where a > 0 is a parameter.

0 V2az—z2

Solution:
We recall Fubini’s theorem: Let

e D C R? be the region of integration (i.e. the set on which it has a meaning to consider the integral
of a given function, for example the region can be enclosed by the graph of some continuous
functions),

e f: D — R is a measurable function (i.e. a function that can be integrated, for example, a
continuous function) and

e the double integral of the absolute value of f is finite, i.e. [[|f| dS < oo (for example if the
D
function is bounded).

Then, the double integral [[ f dS exists and the following holds:
D

([ tewa)a=[[ra= [ ([ i)

m(D)  (Rx{y})nD b (D) ({z}xR)ND

where 71,7 : R2 — R are the projection on the single axis, thus 7 (z,y) = @, and m(z,y) = y.

Observation: The assumption that the integral of the absolute value of the function is finite, is a fundamental
assumption! For example, for the function

22 — g2
flz,y) = m

on D = (0,1) x (0,1) \ {(0,0)} we have

/o1 </o1 % ) = /o1 Lﬂ jI-y r: 7/ 2= farctan(2)ly = 2

and 1 1.2 2 1 =1 1
z? —y —z 1% / -1 1 ™
—=—dx | dy = —_ dy = dy = [— arctan = ——
/0 (/0 (22 +y?)? ) Y /0 [ﬂc2+y2]z:o N R [ Wlo=-7
but
x2 —y? _
/ / (x2+y2)2 drdy = oo

In this example, we just exercise on the interchange of the order of integration, thus, we suppose
that the function f satisfies the assumptions of Fubini’s theorem.
(i) The region of integration is

D:{(J;,y)E]RQ|O§m§7r&0§y§sinx}.




We have
mi(D) = (0, )

and
({z} xR)N D = (0,sinz).

After the change of order of integration, we have
m(D) = (0,1)
and, from the inequality y < sinz, we derive:

x , x €
T—z , x €/

)
)

Attention! arcsin and sin are each inverse function of the other, only for angles in the interval <—g, g) ‘We use the
fact that sinz = sin(m — z) and, for € (5, m), is then 7 — x € (—7,0), thus

B

arcsiny < arcsin(sinz) = {

[SERS
3

)

arcsin(sin ) = arcsin(sin(m — z)) = 7 — x.

Therefor, we get arcsiny < z < 7 — arcsiny, from which
(R x {y}) N D = (arcsiny, ® — arcsiny).

The integral then looks like the following:

7 sinx 1 m—arcsiny
//fa:ydydx—/ / f(z,y) dx dy.
arcsiny

(ii) The regions of integration are
Dy ={(z,y) eR*[0<z<1&0<y<a}

Dy={(z,y) eER? |1 <2 <2&0<y<2—x}.
The sets Dy and D intersects only on the segment {1} x (0, 1), that does not effect the value of the
integral. The function f can be integrated on the union of the two regions D = D; U Ds.

Attention! This union is not an obvious thing! If the two region of integration intersects on a ”more consistent”
set, we would need to integrate twice the function on the intersection (a contribution from each of the regions D;). More
precisely, the following holds

é[fds + 4[fdle/\D2de + 2. // fds + //de

D2\Dy

Thus m3(D) = (0,1) and (R x {y}) N D = (y,2 — y). After the change of order of integration, the
integral becomes:

1 2 2—x 12—y
//f zy) dyda:+//f 2,y) dydx://f(x7y>dxdy.
0 0 1 0 0 Yy

(iii) The region of integration is

D= {(z,y) €ER?|0 <z <2a & V2ax — 22 <y < V2ar}.
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The region is bounded above by the parabola y? = 2az and below by half of the circle 2ax — 22 = 32
(or, equivalently (x — a)? + y? = a?). We divide the region in three parts

Dy :=Dn{(z,y) eR? |y >a}

Dy:=Dn{(z,y) eR?|y<a & z<a}

and
Ds:=Dn{(z,y) ER*|y<a & z>a}.

Now we express the regions D;, using cuts parallel to the x-axis (using the curves y? = 2ax and
(z —a)® +y* =a’):

Dll
y2
a<y<2, S-<z<
2a
DQZ
2
0<y<a, 2-<z<a-—+a2—y?
2a
Dg:

0<y<a, a++a?2-y2<zx<2a

/D/fdsz/D[fds + /D[fds + /D[fdsz

Thus, the result is

2a a a2—y a 2a
//facy de dy + / / flz,y) doe dy + / / flz,y) dx dy .
a y 0 4t\/az—y2

Exercise 6.2. Find the convenient order of integration and evaluate the integral:

]

4—z?

_f "”e/dydx
0

2
f dy dx
yi+1

8
(ii) [
0 ¥z

Solution:
(i) In order to evaluate this integral, it is convenient to change the order of integration. We have

D={(z,y) eER*|0<2<2&0<y<4—2*&y+#4}.
. 2 .
The function f(x,y) = % is not bounded on the set D.
(Explanation: The set D is bounded by the parabola y = 4 —z2. We may, nevertheless, consider a different parabola
that will lie in the interior of D, thus we consider a suitable A > 0 so that (z,4 — Az?) € D. Then, we have
ze2(4—2z?)

i - 1 re )
o0 TEYV =R, T +00.)

y:47)\172, z>0
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It is not clear if [[ |f] dS < oo and if, therefore, we may use Fubini’s theorem on the change of order
D
of integration. We will use a different statment:

Theorem: Let’s consider

e D C R?, a region of integration

e f:D — R, a non-negative measurable function and

e suppose that one of the iterated integral, evaluated with a certain order of integration, is finite

Then, also the integral in the reverse order of integration is finite, and it has the same value (and the function has a double

integral [[ f dS).
E
Moreover, we remind the definition of the integral [[ f dS, if the function f or the region of integration E is unbounded.
E
Then, the integral is given by a (finite) value, only if it is (by definition) absolute convergent, i.e. if
1im //|f| ds = //|f| ds < oo

En

for a certain sequence of bounded regions £y C E2 C --- C E, C Ep41 C --- such that f on E, is bounded and
E = UpE,. In this case, for the integral, we may use Fubini’s theorem (in an analogous way like for bounded functions
on a bounded region of integration).

Thus we have

mo(D) = (0,4)
and
R x{y}H)NnD =(0,/4
We now get
2 4—g? 4 d—y 2y 4 2 9y
ze Tle T=+/4—
/] [ (] i) a=[laoply "w-
0 0 0 0 0
r 2y 2y 4 8 1
e e“Yqu= e® —
= | Tw=[7], =

(ii) Again, it is convenient to change the order of integration. We have

D={(z,y) eR*|0< 2 <8 & /r <y<2},

thus
T (D) = (0,2)
and
(R {y})nD=(0,9°).
We now get

St~
ﬁ\w
Qd.qu"
+la
—| 8
o\w
\

@
+
—_
Q.
v
QU
N
O\m
S
+ %
—
QU
<
|
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Exercise 6.3. Evaluate the integral
2

2 4y
/ / (22 + ) d dy
0 0

changing it to polar coordinate.

Solution:
The region of integration is

D={(z,y) eR*|0<y<2&0<z <412} =
={(z,y) eR* [0 < w,y & a® +y* < 4},

thus a quarter of a disk.

We use the Theorem on substitution: Let U C R? be a region of integration, f : U — R be a
measurable function with a finite integral and ® : U — R? be a map (called parametrization). Moreover,

suppose that
e & is one to one and continuously differentiable on U® (i.e. on the interior of U) and

e the set U\ U° (C 9U) has zero measure (i.e. its contribution to the value of any integral is zero;
usually it could be a curve, a segment, and so on, with zero area).

//deZ/U/(fotI>)~|det<I>/| ds.

o(U)

Then

Polar coordinates are determined by the map ® : (0,+0c0) x (0,27) — R2? where @( ; ) -

T COS ¢

rsing /)’

We have @, v = (Gnd eony ) and det @), , =r. Since D is a quarter of a disk, we can easily
parametrize it D = ®(U), where U = (0,2) x (0, ). On D°, ® is obviously one to one and continuously
differentiable, and the set 9D is formed by two segments and an arch of a circle, that are sets with zero

measure. Thus, we get:
Vi—y?

2
O/O/(J;2+y2)dxdy: //)(x2+y2)dS:

D=3U

jus jus

://TQ-rdS:/Q(/Qr?’dr> d@ZZ[T}::zmﬂ:]‘ld@zzm
U 0 0 0

0

Exercise 6.4. Evauate the integral

/ Vaz+y? dS
b

using polar coordinates, where D is bounded by the curve r =1 4 cos ¢.
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Solution:
In polar coordinates, the region is given as

U={(r,p) ER*|0<p<2r & 0 <7 <1+cosep}

we set D := ®(U) (that is in Cartesian coordinates a region bounded by a curve called cardioid)
the theorem on substitution, we get

// \/stz//r-rdsz
) U

D=&(U
2w l4cose 27 27
9 7"3 r=14cos ¢ 1 3
:/( / r dT)d(p:/[—} d(pzf/(l_i_cosgo) dp =
3 lr=0 3
0 0 0 0
2m
1 3 2 2 5
= 3 (cos® ¢+ 3cos” o+ 3cosp+ 1) d(p:ﬂ'-i-gﬂ‘: gﬂ'.
0
For the single integrals, we have used the relations (for n > 0):
27 27"_%
/C°S2”“ @ dp = cos®™ T dyp = [“ =p- %J =
0 0,%

Ky ™
= /c052"+1(a+ g) da = — /sinQ""'1 ada=0
—r -
(that follows from the periodicity of the function and its property of being odd). Similarly, since
27 27
2 _ 2
/cos @ dp = /sm @ dp
0 0

and, at the same time
27 27

/(0052go+sin2<p) dp = /1 dp = 2m
0 0
we have

2w 9

/0052<pd4p:—7r:7r.
2

0

. Using

Exercise 6.5. Evaluate the integral

// xe_ysiny ds
Yy
E

for the unbounded region E = {(z,y) € R* |0 <z < 4}.

Solution:

ie. if

nleréc//\f| dS:://|f| dS < oo

We repeat the definition of the integral [[ f dS, if the function f or the region of integration E is
E

unbounded. Then, the integral is defined by a (finite) value, only if it is (by definition) absolute convergent,
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for a certain sequence of bounded regions £y C Fy C --- C E, C E,,41 C --- such that f on E, is
bounded and F = U, FE,. _

In our case, we have f(z,y) = xe_y%. First of all, we have to verify that the given integral exists,
i.e. absolutely converges. On E we have

_,Siny _
‘xe y—‘ < ze Y.
Yy

For this non-negative function we can use Fubini’s theorem (if at the end of the integration, we get a

finite value):
)eg dyS/Kf*% dy < o0
0

ke

[[vis= ] fo s [ ] (5

where we have used the fact that |y—826_%| < K for an appropriate constant K > 0 (this function is
continuous and goes to zero at infinity).

The integral of |f| is thus finite and we can use Fubini’s theorem (as for the anagous case of a
bounded function on a bounded region of integration). Thus, we can write:

co 3 ) 0o
//xe ySIY ds = //me ySInY dz dy = g/y(e_ysiny) dy =
E 0 0

:[ (g(y) g(y)l ]:

y)=e Y siny, h(y)=— 3% (cos y+siny)

o0
_ OO 1
—)(cosy+siny §/ cosy—i—smy) dy =
0
0

1

16

oo
1 o 1
-y S 5 d :7[_ Y cos } = —.
/e (cosy + siny) dy 6l ¢ eosy| T
0

Observation: In evaluating the indefinite integral, we have used the following method (easier than
several times by parts) based on complex functions:

/e*y cosy dy—ﬁ—i/e*y siny dy = /e*y(cosy—ﬁ—isiny) dy = /e*yeiy dy =

eli-1y i+1
/(1 DY dy = —— +C:*1; e Y(cosy +isiny) + C =
—

6711

= [ey(cosy - siny)] +i [

5 5 (cosy + sin y)} +C.

Comparing the real and imaginary parts, the we get:
6711
/67‘1/ cosy dy = 77(0053/ —siny) + C;

and

—y
/e_y siny dy = —%(cosy + siny) + Cy,
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where C1, Cy and C' are constants.

The integral can also be derived in a ”heuristic” way: we guess that the primitive function must contain the functions
e Y cosy and e” Y siny. We thus try to take their derivatives:

d

— (efy cos y) = —e Y(siny + cosy)

dy

d ., . oy

— (e7¥siny) = —e " ¥Y(siny — cos y)
dy

and the integral of the given function is found as a linear combination of the equations:

d -y
e Ysiny = (—%(Cosy + sin y))

dy
d e Y
e Ycosy=— [ ———(cosy — sin .
Yy dy( 5 (cosy y))

Exercise 6.6. Use the substitution u =z + 2y, v = x — y to evaluate the integral

2
3 2—2y

/ / (x4 2y)eY™" dx dy.
0 v

Solution:
The region of integration is

y<z<2-2y.

It is a triangle with vertexes (0,0), (2, 2) and (2,0). The substitution ® is linear, and we are given its

inverse: (5):1(5)26—21)(;)'

The triangle can be expressed as the convex hull of its vertexes (i.e. the smallest convex set containing
the given vertexes - given the points Ay, ..., A, the convex hull of [A44,..., A,], is given by

[Ar, o Anla =) NA0< A, A & YN =1)).
i—1

=1

Since a (one to one) linear map (®) preserves convex hulls, the set U, such that ®(U) = E, is also given

as the convex hull of the vertexes
'(0,0) = (0,0)

Thus
U: 0<v<uy, 0<u<?.
Moreover, (®71) = (1 %), det®' = W_l), = —1. After substitution, we get
5 2-2y
1
/ / (x+2y)eY™" dx dy = // (x+2y)e¥™" dS = //uefv '3 ds =
0y E=3(U) U
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u 2

2 2
1 1 v=u 1 ) ,
=5 [ Jueravau=g [ul o] Tan= g fut e au= g5 e -
0 0

0 0

=1+e2

//gewy ds
x
E

for the region E in the first quadrant, bounded by the curves xy =2, vy =4, y=2x and y = 5.

Exercise 6.7. Evaluate the integral

Solution:
The region of integration is

T 2 4
E: 0<wzy -<y<2z. —<y<-—
2 T T
or
I _y
E: 0<uzvy, §§7§2, 2 <2y <4
x
Due to the form of the region of integration and the given function, it is convenient to set new variables
u=" and v= xy.
x

Setting new variables, requires the existence of the inverse map ®, that we use for the substitution in
our. We should verify if this map ® exists and if it is one to one - we evaluate the variables z and y in
terms of u and v and we get (supposing that z,y > 0)

T = \/z and y = +uv.

B:(0,400)% =R, B(u,0) = (\/3 \/@)

We thus define the map

whose inverse is
d 1 (0,400)? = R? O Ha,y) = (g,acy).
T

The determinant of ®’ can be easily evaluated with the use of the inverse map (where the square roots

are not present):
y

_y 1
(@1 = ( ;2 : ), det(®7 1) = —2%
and thus

1 1
det @, ) = =, '
U (u,0) det(‘l)_l)/|q>(u,v) 2u

A parametrization U of the region E = ®(U) is

Thus, we can write

// %emy dS://ue”

E=3(U) U
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Exercise 6.8. Find the mass and the center of mass
(i) of the triangle with vertexes (0,0), (1,1), (4,0), whose density is given by the function p(x,y) = x.

(ii) of the part of the plane bounded by the parabola y = 9 — x? and the x-axis, if its density is given by the
function p(z,y) = y.

Solution:
(i) The region of integration is

E: 0<y<l y<z<4-3y

The required integrals are the following.
Mass:

1 118y —4)% 4371 10
3 fom v o)
3 / By—4)?—y* dy 5 5 3
0
x-coordinate of the center of mass:

1 1
_ 1 _3 2 _ 1 1 A
Tlfa//xp(x,y)d5f10/< / x d:c) dy—lo/[:EL:y dy =
E 0 0

y-coordinate of the center of mass:

1 — 1
1 3 3 r=4—-3y
Ty=— - = dz) dy = = | [a%] dy =
) m//yp(:zay 10/ /xyx 2O/zym:y Yy
E 0 Yy 0

1

3

=2 [ ya—3y)? — P dy =

20/ y)® —y* dy
0

"'“‘w

1
121y 3
~3 2d——[——3 2]=7.
/ Vtdy=— |7 -y ) =
0

(ii) The region of integration is

E: -3<z<3, 0§y§9—x2.
mass:
9—2? 3 , 3
1 21972 2 2
m = pdS ydy)dxzi [y}o de = [ (2% —9)° de =
230 -3 0
5 ) 648
= [ -6 +s1y] = =
z-coordinate of the center of mass:
3 9—z2

1
lef//xp(x,y / /ydy d =0
m
E
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(it is an odd function on a set symmetric with respect to the y-axis)
y-coordinate of the center of mass:

3 9-—g? 3
_ 1 _ 1 2 _ 1 317~
TQ—E//yp(x,y)dS—m/( / Yy dy)dx—gm/[y
E -3 0 I3

9 5 33 2713 36
— 2 [ (32— 223 g = |:36 _ 34,3 75_7} ==,
/( SR e vl L i P

Exercise 6.9. FEvaluating the integral

12
//e” + 2zy) dy dx
0

2x

choose the convenient order of integration.

Solution:
We will change the order of integration. The region of integration is

E:{($7y)ER2|O§$S1&2$§y§2}={(x,y)€R2|O§y§2&0§x§%}.

2 2

1 2 2 %
3 y 4.9 4
2y e Y e*+3
(e¥ 4 2zy) dy dox = (e¥ 4 2zy) dx dy = y—d:[— —}:7.
//eeryy //e+xymy/e+4y 4+160 1
0

2x 0 0

o<

Second (much more difficult) method: We use a substitution into polar coordinates ®

o: VTSV qetd =
y=rsingp

the region
E={(z,y) eR?|0<2<1&2r<y<2}

with parametrization £ = ®(U) where
U={(rp) eR*|0<rcosp <1& 2rcosp <rsinp <2 & 0< ¢ <2}

After semplification, this can be rewritten as
U={(r¢) €R? |0 <7< —— & arctan2 < p < 1}
Sy T T osing =P=or
Then, we have

// ey +2zxy) dS = // r¥sin® @ | o2 sin p cos p)r dS = / / r¥sin® o 4 o2 sin p cos p)r dr dp =

E=®(U) arctan 2
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- /2 [e’"2Sin2“" r4singocosg0y:ﬁ do — /2 et —1 + 8cosga di
B 2sin? o 2 r=0 [ 2sin?p  sin®y
arctan 2 arctan 2
1—et 3 1—et 1 1 et +3
te(y) — } — 4 4(1 ) - .
2 8(¥) sin? ol arctan 2 2 tan(arctan2) + + (tan(arctan 2)) 2 4

Exercise 6.10. Using a suitable substitution, evaluate the integral

/ ey3\/xy —y2 dSs,
E

where the region of integration E is bounded by the lines y =z, x = 10y a y = 1.

Solution:
The region E is a triangle with vertices (0,0), (1,1) and (10, 1) and for the expression under the square

root, we thus have zy — y? = y(z —y) > 0. At first sight, it seems easier to integrate first with respect

to x.
E: 0<y<1 & y<z<I10y
1 10y 1 4/

//eyS\/xy—deS://e” xy — y>? / (zy = y)/ Tloydy:
E 0y 0 Y o

1

/6”32 9y 3/2 /Z%ery3 dy:G[eys]yZI:G(efl).

y=0
0 0

Exercise 6.11. Fvaluate the integral
//xcos(x2 +y) dS
E

where E - —/m <x <0, 0 <y <, using the convenient order of integration.

Solution:
The region E is a rectangle. We can integrate using either order of integration:

s

T 0
3 2 =0
//mcos(x2 +y) dS :/ / xcos(x? +y) dr dy = / [wh:_ﬁ dy =
E 0 —7 0

T T

= %/Siﬂ(:U) —sin(y +7) dy = /sin(y) dy = [— cos(y)L:O =2
0 0

0 0
//xcos(x2 +y) dS = / /;vcos(x2 +y) dy dox = / [m sin(x? + y)} . dx =
E _J7 0 U .

or
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0 0
= / zsin(x? + 1) — xsin(z?) dr = / —2xsin(2?) dr = {cos(xz)}
VT VT

Exercise 6.12. Using a convenient method of integration, evaluate the integral

//I2|y| dSa
E

where the region E : 2% +y* < 2.

Solution:
The region of integration is a disk of radius v/2. We will use polar coordinates:

T =rcosp, Y=rsing

0<r<v2, 0<ep<2r

V3o V2 27
//x2 y| dS = rzcoszsz% |rsin | - r dp dr = (/r4 dr) . (/cosggp|singo| d(p) =
E 0 0 0 0
ST (s ot i) 8. [y
5 cos” psin ¢ dy 5 3 oo R
0

Exercise 6.13. FEwvaluate the integral
/ / ev ds,
E

where E is the region in the first quadrant bounded by the curves x =y?, x =0 and y = 1.

Solution:
The region of integration

E={(z,y) eR*|0<z <y’ &0<y<1}
is bounded, but the function f(z,y) = ev restricted on E might not be bounded - it has a problem at
the point (0,0). We investigate the behaviour of f on E approaching this point. Since for (z,y) € E we
have 0 < z < y? and 0 < y, then 0 < ¢ <y and thus

1<ev <e¥—1

for (z,y) — (0,0) therefore ( %IIH( : ev = 1. The function f is thus bounded on E and continuous
x,y)—(0,0
(z,y)€E
and the integral exists.
We evaluate the integral using Fubini’s theorem

1

1 y? 1
//eZdS:/7ezdxd Z/{e:r#d :/ e —ydy=[y-ne - L] =2
y yer| ye! —y dy=|(y 7lo " 2
E

0 0 0 0
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7 Tripple integrals
Exercise 7.1. Fvaluate

Jff

where E is bounded above by the plane z = x + 2y and below by the region of the plane z = 0 enclosed by the
curves y =2, y=0, = 1.

Solution:
The region of integration is

E: 0<z<x+2y, 0§y§x2, 0<x< 1.

Also now, it holds

Fubini’s theorem (for triple integrals): Let E C R3 be a region of integration and let f : E — R
be a function with an integrable absolute value (for example, a continuous and bounded function). Then

// fav= // / f(z,y, 2) dz) ds,

m(E) ({z}x{y}xR)NE

where 7 : R® — R? is the projection, 7(z,y,2) = (z,y) and dS indicates the integration with respect to
the left variables, for example x and y.
Thus, we evaluate:

2

1 2 z+2y 1z 1
y2 2y3 y=z
ydV = y dz dy dz = y(z +2y) dy de = [—er—} do =
2 3 ly=o
E 00 0 00 o

1
b 228 1 2 5
dr = .
2 3 12 21 28

Exercise 7.2. FEvaluate

/{/xy av,

where E is enclosed by the surfaces y = z2, x = 4%, z = xy and z = 0.

Solution:
The region of integration is

E: 0<z<ay, 2*<y<yz, 0<z<l

Thus, we have:

1 Vzay 1f 1
///xyzdv ///zyzdzdyd z// é/xs—xudx—
0 0 0
1.1 1 1
=56 12 "o
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Exercise 7.3. Fvaluate
// / zy dV,
E

where E is the tetrahedron with vertezes (0,0,0), (0,1,0), (1,1,0) and (0,1,1).

Solution:
The region of integration F is the set enclosed by the planes t =0,y =1, z =0 and z = y — x. Thus,

for example, we may write

We evaluate:

oo ]

o\
8
<
SN
I\
=W
8
U
<
Il
O\H
o\@
<
(v}
8
|
8
»o
<
=N
5]
U
<
Il
O\H
<
[\v]
1\3‘ 8,
|
oo‘ 8,
<
| I
iR
=} <
QU
<
|

Exercise 7.4. FEvaluate

/l/ Va2 + y21+ (z —2)2 4,

where E : x? +y? + 22 < 1.

Solution:
We recall the theorem on substitution in multiple integrals:

// de:///(fofl’)-|det<I>’\ av.

o(U) U

We will use spherical coordinates:

x = (rsind)cosy
W : (0, +00) x (0,27) x (0,7) = R®* ~ where V¥: y = (rsind)sing .
z = rcosv
Observation: Spherical coordinates are the composition of two
U = Py 0Py
7 = rsind r = Tcosp
1 ¢ = ¢ , P2: y = 7sing
Z = rcos? z = Z

thus, for the determinant, we have

det ' = det(@g)iq,l -det(®1)" = Flp, -7 = (rsind) - r = r?sin .
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We choose to parametrize the ball E = ¥(U) as follows

U: 0<r<1 & 0<p<2r & 0<9<7m.

Thus, we may write

1 w 27

1 =«
/// r*sind dy d9 dr:2ﬂ'// r_siny 49 dr =
), ) V12 —4rcosV + 4 J V12 —4rcost + 4

l\.’J

1 1
V12 —4drcosd + 4
7T/ rcosv + 4 ]19 : dr:ﬂ/r(\/T2+4T+4_\/7"2_47“"4) dr =
A 0

1

1 1
2
:W/T(|7"+2\_|7“—2|) drzw/r(r+2—(2—r)) drz27r/r2 drzgw.
0 0

0

Exercise 7.5. Fvaluate the center of mass of the solid

E: 22 +y*+22<R* & z-tan(a)> 22+ 2,

with density p =1, where R >0 and « € (0, 3) are parameters.

Solution:
The solid E is the intersection of the ball with radius R and the cone with angle at the vertex 2«, and
vertex at the center of the ball. It is again convenient to use spherical coordinates

x = rsindcosp
v y = rsindsing
z = rcosv

A parametrization E = U (U) is given by
U: 0<r<R & 0<¢p<2nr & 0<¢¥<a

In order to evaluate the center of mass, we first need to evaluate the mass:

m=[[[ vav- ///r sin dV = ///r sin dip di dr =

E=U(U)

R « R
2
:27T//r251n19 dd alrz?w(l—cosoz)/r2 dr = g’]TRB(].—COSOZ).
00 0

Since the solid F is a solid of rotation, symmetric with respect to the z-axis, the z-coordinate and
y-coordinate of the center of mass are both equal to zero. It remains to evaluate the z-coordinate of the
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center of mass:

a 27

R
_ 1 ///de:i///r%osﬂsmﬁdvzi/// 38111219 do d dr =
m m m
U 0 0

E=9(V)

R «

0 3 . TR 3R 1—cos2a 3R
=— : 2 =% (1 —cos2a) = 2. T 2PEE 2ty _
m(/r dr) (/sm 19d19> 8m( cos 2q) 6 1 osa 8( + cos )
0

Exercise 7.6. Find the center of mass of a homogeneous cone with height h > 0 and base radius R > 0.

Solution:
The given cone can be described as follows

E: 0<z<H & \/x2+y2§%

and usually a cone is parametrized using cylindrical coordinates x = rcosy, y =rsing, z =h
U: 0<r<R & 0<¢p<2r & 0<h<H.

This time, in our triple integral, we choose to use the order of integration corresponding to cutting the
cone in horizontal circular sections that then we integrate with respect to the height. We use the known
formula for area of a disk.

mass:
h

m:///ldV:/ // ldxdy dz—/w%zdz—gR%
E

0 2+y2<RZ

Since the solid F is a solid of rotation, symmetric with respect to the z-axis, the x-coordinate and
y-coordinate of the center of mass are both equal to zero. It remains to evaluate the z-coordinate of the
center of mass:

h
ngi///zdvzi/ // zdxdy :/ B e L2 3y
m m m 4 4
E 0

Vi< E oz

From our solution, it is clear that the integral depends on how the area of the horizontal section changes at different
heights, thus we would obtain the same result (the center of mass is at a quarter of the height of the cone) for any cone,

with any other type of base (for example a pyramid).

Exercise 7.7. Calculate the moment of inertia of a rotational paraboloid E of height h and base radius R
relative to an axis which passes through the center of mass E and is perpendicular to the axis of rotational
symmetry of the paraboloid E (i.e. Emph equatorial moment).

Solution:
The region of integration is
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We find the center of gravity of the solid of revolution E using cylindrical coordinates

T = 7rcosp
®: y = rsing
z = z
and parametrization E = ®(U)
hr?
U: ﬁgzgh & 0<p<2r.
mass:
R h 27
m= ///1dV /// dV:///rdgodzdr:
E=3(U) 0 nr2 0
R2
i h 2 4 1R hR2
T T T T
= /(h‘?)d“%h[?‘@L—T |

0
The solid F is rotationally symmetric around the axis z, thus, it is sufficient to find the only z coordinate

of the center of mass:
) R h 2r
—///de——///zrdV——///zrdcpdzdrz
m
0 0

E=%(U) hr2
R2

h R
2 , h%rd 2h 12 r6 R 2
/zrdzdr:W/r(h — R4)dr:§{§7@}o zgh.
0

The moment of inertia relative to an axis perpendicular to the axis z and passing through the center of
mass will not depend (due to the symmetry of the solid E respect to the axis z) on the choice of the
direction of the axis. We choose for example the direction of the x-axis, i.e. the axis p will have equation
y=0and z = %h. The moment of inertia then will be

Mz/// (pp(m,y,z))Q av,

2
where p,(z,y,2) =y + (z — %h) is the square of the distance of the point (x,y, z) from the axis p.

In the evaluation of the moment, we again use the transformation ®:

M= ///y+ z—fh LAV = ///r sin 19+rz—fh) dv =

E=3(U)

2T

h R h
2 \2
//7"38111 19—1—7’ z—fh) dgodzdr—ﬂ//r?’—i—%(z—gh) dz dr =
0 0

R
B 3 r 2 2 \37#=h B 3 T 2 9 2,5 (7 2\3
*”/’”“" (“ﬁ)*gr[(%gh)kz%drwh gt gt - g (g g) -
0 0

(- (e 9) 1) =T (e g)
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Exercise 7.8. Fvaluate
Va—x?

2 2
/ / / 22 492 dz dy de.
2

R N e

Solution:
The region of integration is

E: |21<2 & |y <vid—22 & a2+y2<z2<2

or

E: 22°<4 & 2249y*°<4 & Ja24+y2<z2<2

E: a2+ y2<z2<2,

that is a cone with height 2 and base radius also 2, that stands on its vertex at the origin. In order to
evaluate the integral, we use cylindrical coordinates:

and thus

r = rcose
®:(0,400) x (0,27) x R = R3, where ®: y = rsing
z = z
that is
cosp —rsing 0
® = | sinp rcosp 0 and det® =1 .
0 0 1
As a parametrization of E we choose
U: 0<r<z<2 & 0<p<2r
We may write
2 4—22 2
/ / / (2? 4+ 9*) dz dy dox = ///(x2+y2)dV:
~2_I=2Z [ E=3(U)

Exercise 7.9. Fvaluate the center of mass of the solid
22y 2
E: ——|—b—2—|——<1 &  x,y,2>0,

with density p = 1, where a,b,c > 0 are parameters.
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Solution:
The region of integration F is one eight of a regular ellipse. We therefore parametrize the ellipse using
a variation of spherical coordinates ®:

x/a = rsindcosp
D y/b = rsindsing |
zle = rcos

that is the result of composing the classical spherical coordinates ¥ with the linear transformation L,
that deforms the single axis:

d=LoV, L(Z,7,%) = (aZ, by, cZ).

Thus, we have
' =LigoW a detd = (detLy): (det¥’) = abec- r? sin®,

since

L=

o o e
o o O
o OO

The parametrization U of the region of integration F = ®(U) is

U: 0<r<1 & ogwgg & 0<9<

ST

We evaluate the mass of E, using the known volume of a ball K of radius 1 and the fact that the volume
of E is one eight of the volume of the ellipse F'. Since F' = L(K), we have:

e fff o= fff o= merar-

F=L(K)

_abc///ldV_LbC é :méb0~

In order to find the center of mass T = (T1,T»,T3), it is enough to evaluate one of its coordinates (for
example T3), because the other coordinates can be found in an analogous way, considering a rotation of
the ellipsoid and similar calculation. Thus, we have

m /// ZdV—*/// (crcos ) abcr sind) dV =

E=%(U)
5 15 3 1 3
—C///rgsln%?dgodﬂdrf— /7’ dr (/Sln219d19 /ldga
T
0 0 0 0 0
Similarly, we can evaluate 77 = 7a and Ty = %b.

Exercise 7.10. FEwvaluate the integral
[[[1av.
E

where E = {(z,y,2) €R* [ 2 +y* <1 & [2| <3 & y > 0}
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Solution:
The region F is half of a cylinder. We will use cylindrical coordinates:

O(r,p,2) = (recose,rsing,z), det® =r
and parametrization for the region E = ®(U) as

U={(rp,2) eR}|0<r<1&[2/<3&0<p <7}

T

///\ZWV ///\zIrdV ///|z|rdzdgpdr_(/|z|dz>. /1d¢ 0/1”%

E=3(U) -

Exercise 7.11. FEwvaluate the integral
E

where E = {(z,y,2) € R3 | /22 + 42 <2<2& 0<y & x < 0}.

Solution:
The region E is a quarter of a cone. We will use cylindrical coordinates:
D(r,p,2) = (rcosp,rsing, z), detd® =r

and parametrization of the region E = ®(U) as

U:{(Tﬁpa)ER3|O<T<Z<2&§S@<7T}
T 2 oz 17r2
///o: dV = ///r3c052<,0dv:///r3cos @drdzdgp*Z//z cos? ¢ dzdp =
E=®(U) T 0 i

:i(0/224dz).(/6052¢d¢):

jus
2

8 Path integral

T4y

Exercise 8.1. Integrate the function f(x,y) = \/H% along the curve I': y = "“2—2 from the point A =

to the point B = (0,0).

(1,3)

Solution:
In order to evaluate the integral, we use the formula

b
/ f ds = / Fe@®) - ¢ @)] dt,
I a
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where ¢ is a suitable parametrization of the curve I, i.e. a function ¢ : (a,b) — R™, that is

e continuous and piecewise differentiable on the interval {(a, b),

e (o is one to one on (a,b) up to finitely many exceptions t1,...,t, € {a,b) (the curve can intersect
itself),
e ¢((a,b)) =T.

2
As a parametrization, we use ¢(t) = <l—t, %) for t € (0,1), that for sure satisfies all the assumptions.

Then, we have

Pt)=(-1t=1) a [®OI=v1+(t-1)>
Thus,
— ¢4 05 / (1—t)*
_ o 2 — _ B — u=1-—t —
/f s = 71+ — V1+(t—1)2 dt 0/1 b dt [duz_dt}

0
Lut 1.1
T =55 o
1

Exercise 8.2. FEwvaluate the path integral

/(l’% +y?) ds,

r

2
3

where T is the asteroid z + y% = a3, with parameter a > 0.

Solution:
The equation of the asteroid is similar to the one of the circle (only with different exponents). Thus, we

parametrize it with a kind of polar coordinates, also with the proper exponents:
T =a-cos>t

v y=a-sint

for t € (0,27). Then, we have

dx d
o'(t) = (;}f,;;) = (—3acos2t-sint, 3asin2t-cost>

o' () = \/(Sa cost - sint)? (cos2t +sin®¢t) = 3a|cost - sint|.
We use the fact that both the function and the asteroid are symmetric with respect to the origin, and
we evaluate the integral only on a quarter of the asteroid:

2
/(gj% +y%) ds = /a% (cos4t+sin4t) -3a|cost - sint| dt =
r 0

7

= 3/ cos5t-sint+sin5t-cost) dt:2a% [—cosﬁt—i—sin(itf]og :4a% .

0
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Exercise 8.3. FEvaluate the path integral
/ zy ds,
r
2

where I' : %5 4 Z—j =1 & x,y > 0 with parameter a # b.

a2

Solution:
The curve is a quarter of an ellipse, thus we choose as a parametrization a ”variation” of the polar
coordinates

Z = cost

a

Y
Yoo
; = sint

for t € (0,%). Then, we have

dr dy .
14y — —(_ .4 X
o (t) = (dt’ dt) ( asint, bcost)

le' @) = \/a2 sin?t + b2 cos?t .

Thus:

w3

/xy ds = /ab costsint - Va2sin?t + b2 cos? t dt = [ usasintibioostt |

du=2(a*—b?)sintcost dt
r 0

ﬂ2
ab /\f i ab [ %} u=a®  gb(a® —b3)  ab(a® + ab+ b?)
= wdu=——5——— |u = = .
2(a? - b?) 3(a? — b?) u=b>  3(a? —b?) 3(a+0b)
b2

Exercise 8.4. A particle is moving so that its position, at time t, is given by p(t) = (cos(t),sin(t)

Determine the length of the traveled path during the interval of time (0, 1).

2
)’ 2

t).

Solution:

The path lies on the surface of the cylinder 2 + y? = 1 and the particle travels on a stretching spiral.
The length of the path I' is given as the integral of the constant function f = 1 along the curve

()= [1ds= / I @ dt

Thus, we have
¢'(t) = (= sin(t), cos(t), t)

and
e’ ()] = \/SinZ(t) + cos?(t) + 12 = V1+t2,
then, we get
1 arcsinh(1)
or) = / | ds = / VITP = [ ] - / L+ sinbE () - cosh(a) da
r 0 J
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arcsinh(1) = In(14++/1+12) In(1++/2) In(14+v/2)

— 2 _ e +em ™2 _ 1 2a —2a _
= / cosh”(a) da = / (72 ) da = 1 / 24+e*+e da =
0 0 0

a=In(1+v2
1+v2) 1 <(1+ﬁ)2_1>:

L =51+ V2) + EGE

0| =

= %111(1 +2) + é [e“ - e*ﬂ

1 1 1 3-2v2\ v2 1
—21n(1—|—\/§)+8<3+2\/§—3+2\/§'3_2\/§>— 5 +21n(1+¢§).

Observation on the substitution: Since the graph of the function u = +/1 + 2 is part of the hyperbola (u2—t2 = 1),
it is convenient to use a substitution using the hyperbolic functions

@ —« a _ -
cosh(a) = e ” and  sinh(a) = c-e
2 2
We just decomposed the function e® into an even and an odd part, i.e. e® = cosh(a) + sinh(«). Similarly, for the
parametrization of the circle u = /1 — t2 we use trigonometric functions sin(a) and cos(a). Also their relations are
similar:
cosh?(a) — sinh?(a) = 1, sinh’(a) = cosh(a)
cosh?(a) + sinh?(a) = cosh(2a), cosh’(a) = sinh(a)

Solving the quadratic equation, we get the form of the inverse function of ¢ = sinh(«):

o = arcsinh(t) = In (t +V1+ t2>.

Exercise 8.5. Evaluate the length of the spiral defined by the parametrization ¢ : (0,2nm) — R3,
o(t) = (tcos(t), tsin(t),t).

Solution:
The curve lies on the surface of the cone x? + y? = 22. The length of the path C with parametrization

 then is evaluated as
b
vy = [ 1@l d (= [1ds).

C
or as the integral of the constant function f = 1 along the curve C. Therefore, we have

¢'(t) = (cos(t) — tsin(t),sin(t) + tcos(t), 1)

a
I ()] = \/(cos(t) — tsin(t))® + (sin(t) + teos(t))? + 12 = /2 + 2,
thus, we get
2nm V2nw
L) = /1 ds = / V2t d=| 2 | =2 / VIt du=[ oot | =
c 0 0
arcsinh(v/2nm) arcsinh(v/2nm) ' h(VE
=2 / cosh?(u) du = / 1+ cosh(2u) du = [u + %} :msmh( ) =
0 0
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arcsinh(v/2nm)

= {u + sinh(u)y/1 4+ sinh(u)Q} . =

arcsinh(\/inﬂ')
= |u + sinh(u) cosh(u)}

= arcsinh(vV2n7) + vV2nmy/1 + 2n272 = In (\/ﬁmr +V1+ 2n27r2) +V2n7m\/1 4 20272,

Observation: Again, we used here the relation between the hyperbolic function cosh(x) and sinh(z):

cosh?(x) — sinh?(z) = 1, sinh’(x) = cosh(x)
cosh?(x) 4 sinh?(z) = cosh(2z), cosh’(x) = sinh(x)

Summing up we get
_ 1+ cosh(2x)

h2
cosh”(x) 5

and taking the derivative, then
2sinh(x) cosh(x) = sinh(2z).

Solving the quadratic equation, we get the form of the inverse function of u = sinh(z) = 3(e* — e™®):

x = arcsinh(u) = In (u +V1i+ UQ).

Exercise 8.6. Find the work done by the force field ﬁ(m,y,z) = (y+ 2,2+ x,x +y) in moving a particle
along the curve T with parametrization p(t) = (t,t2,t%), t € (0,1), and the orientation induced by this
parametrization.

Solution:
The integral is calculated using the formula

r a
We have
o'(t) = (1,2t,4t3)
thus,
1 1 1 L
‘/ﬁ-ﬁﬁ:/@2+#i4+ut+ﬂ)~ 5; ﬁ:i/&2+&4+6ﬁdt:P3+ﬁ+¢ﬂ0:3
T 0 0

Exercise 8.7. Prove that the following vector fields are conservative and find for each a potential function.

(i) F(z,y,2) = (z* +y, y*+z, ze7),

(”) F(:L’,y,Z) = (31’2 + ﬁv 7%—1%’ (gc—&z-lz)Q)'
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Solution:
The work done by the force F to move a particle in a region U (an open connected set) from point A
to point B is independent from the path if and only if the vector field has a potential, i.e. there exists
a function f: U — R so that grad(f) = F.

If the region U is also simply connected (that means that any closed path in U can be continuously
pulled, inside U, to a point), then this happens if and only if curl(F) = 0 on the whole U.

An example of a simply connected region is R™ or R3 \ {0}.

An example of a region that is not simply connected is R? \ {0}, R?\ " — axis’

)

or the torus.

In our case, the region is the whole R3, thus a simply connected region. The rotational vector field,
called curl, is defined as

i j k
: f OF;  OF: OF; OF, 0OF, OF
cwl(F)=VxF=2 2 o\ (=3_Z=z=2 =3, 21 =22 =1

®) ;’;i g_,yz g; (ay Dz or | 9z Ox ay>

where V = (%, 8%’ %) is a formally defined vector formed by the partial derivative operators.

(i) After evaluation, we have
curl)=(0-0, 0—0, 1-1)=0,

thus, the curl is zero on the whole R? and the vector field F has a potential.
A potential is a function f : R?® — R so that

0 L= ey

@) N o= e
0

(3) 8—‘; = ze

JFrom the first equation, we get
2 a’
faw2) = [ 4y) do= T by + Cly.2),

where C : R? — R is an unknown function depending only on y and z. The form of the found function
f, now can be substituted into the second equation

of 0 sx® oC
2 _ _ - -
Y+ = 9y 8y(3 Jr:verC’(y,z)) T+ 3y
thus

oc

Oy v

We get C(y,2) = [y? dy = % + D(z), where D : R — R is again an unknown function depending only
on the variable z. For the moment, we have

1‘3 y3
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and, substituting into the last equation, we get
3 3

af d /x y oD
S Ry LA ) -2
= 0z 82( 3 tEyt 3 +D(z) 0z
Thus D(z) = [ ze* dz = (z—1)e* + K, where K € R is a constant. All together, we found as a potential

.173 yS
f(x,y,z):g—l—xy—i—?—i—(z—l)ez—i—l(

(ii) Similarly to the previous example, we have

B 11 2y % r 1 -
curl(F)(<x+2)2 (x_i_Z)Q’ (Z‘+Z>3 (m—}—z)i’)’ (x—i—z)Q (Z‘+Z)2) 0

The curl is again zero on the whole R3 and the vector field F has a potential.
For the potential f, we have

of Y
(4) Y = 322 + CEPE
of 1
(5) (’Ty T +z
of _ Y
(©) 8z (x4 2)?

We start from the second equation:

f(ac7y7z):/ 1 dy = — Y + C(z, 2),

_x—|—z Tr+z

where C' : R? — R is an unknown function depending only on the variables 2 and z. The found form of
the function f can now be substituted into the third equation

y _of 9/ y _ Yy oc
(x—l—z)Qiazi@z( :c—l—erC(x’Z))i (m+z)2+8z
thus 80

We get C(x,z) = D(x), where D : R — R is again a function depending only on z. For the moment, we
get

=— D
fla,y,2) = ——— + D(@)
and, substituting into the first equation, we have
Y of _ o y y oD
* +(x—|—z)2 dr  Ox x+z+ () (x+z)2+ Ox

Thus D(z) = [ 32? dov = z® + K, where K € R is a constant. We finally can write a potential

Yy
xr+z

f(xvyvz):_ +.Z'3+K
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9 Surface integral

Exercise 9.1. Find the surface area
(i) of the part of the plane x + 2y + z = 4 that lies inside the cylinder x* + y? = 4,

(ii) of the part of the paraboloid z = x* + y* that lies under the plane z = 9.

Solution:
(i) The surface is given by M = {(z,y,2) € R® | 2+ 2y+2 = 4 & 22 +y* < 4}. Its area can be evaluated

using the formula
[[ros= ][50

where ® is a suitable parametrization of the surface M, i.e. a map ® : U — R3, where U C R?, so that

o0d 8<I> a3,

e it is continuously differentiable and one to one on U°,
e O(U)=M
e the matrix & has rank 2 on U° (or g—i X ‘g—f #0 on U°).
(i) Since the surface M is the graph of the function f(z,y) =4 — x — 2y with domains
U: 2249%<4,
as a parametrization we simply choose

®(z,y) = (l”y f(z, y)) = (z,y,4 —x — 2y)

for (z,y) € U.
We have P 5%
— 1,0,—1 — 1,-2
G = (10D G-,
a’ . . k
1]
oo L3 K]y 22
oY% o1 -2

thus ® satisfies all the assumptions.

Then, we can write
//1d5=//\@d5:\@//1d5=\/6~4m
M U U

since the area of the disk U with radius 2 is 4.

(ii) The surface is given by
M: 2°24y°=2 & 2<0.

As a parametrization we choose
O(z,y) = (z,y,2° +y°)

with domain
U: 22432 <09.
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We have
0P

67 = (1,072$)
0P
aiy - (07 17 Zy)
¢ 0P 8@ 0P 3@
_ _ 2.2
3z < 9 = (—2x,—2y,1) H H 4(2? 4+ y?) + 1.
Thus

27 3
= rcoqcp

//1d5://\/mdsz[ //rmdrdw—
M U

(r, Lp)E(O 3) X (0 27r)

27

:(/der)-(/ ):[W}z-zwzg(?ﬂ%—l).

Exercise 9.2. FEvaluate
/ / z dS
M

where M is part of the cylinder x2 +y? = 1 between the planes z =0 and z = x + 1.

Solution:
The surface integral of the function f: M — R is given by

NE ds://f@w,v»-\\gi
M U

where @ is a suitable parametrization.
The surface is given by

M: 2244°=1 & 0<z<z+1
Its parametrization, using cylindrical coordinates, is given by
D(p,2) = (cos ¢, sing, 2)

with domain
U: 0<p<2r & 0<2z<1+cosep.

We have

g—i = (—singp, cos ¢, 0)
0P
= = (0,0,1)
a

8<I> 0P —( . 0) o®
&p 5, = (cosp,sing,
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Thus, for the function f(z,y,2) = z, we have

27 1+4cos 2T 2

1 2 1 2
//de://zdS:/ / zdzdgo:/mdgpz/(f—&-cosgo—i—cos <’0)d@:
2 2 2
M U 0 0 0 0
™ 3

Exercise 9.3. Fvaluate
/ / yz dS,
M

where M is the surface with parametrization © = wv, y =u+v, z =u — v and u?> +v? < 1.

Solution:
The surface is now defined as M = ®(U), where

U: u?+02<1
and @ : U — R3,
D (u,v) = (uv,u+ v, u —v).

We verify that @ is really a well defined parametrization of M (i.e. ® is one to one and the rank of the
derivative @’ is 2).

The injectivity of ® follows from the fact that the second and the third component of the function
(i.e. y =u+v and z = u—v) form a regular linear map (that is one to one). The rank of the derivative
can be found like in the previous example with the use of the vector product:

0P

% = ('U7 ].7 1)
0P
% = (U7 1, —1)
and

=+2w?+v?)+4#0.

8ux 50 = (-2,v+u,v—

For the integral, we then have

0d 09 H 8<I> 6<I>

U=T COS (p :|

//yzdSz//(uz—UZ)\/mdS:[ v=rsin @
M U

(r,0)€(0,1) x (0,27)

27 1 3 2
= //7‘3(cosz<p—sin2 V22 +4dr dp = (/7"3\/27“2 +4 dr) . (/cos2<p dgp) =
0 0 0 0

because the second integral is zero.

Observation: We can try to find out how the surface M looks like. From the equations y = u+ v and z = u — v we
2 2 2 2
z;y and v = 5%, Thus z = wv = £% and 1 > u? 4 0% = %. Thus, the following relations hold

get u =
y2—z2:4a:, y2+z2§4

that describe a part of an hyperbolic paraboloid (a saddle) inside a cylinder with axis  and radius 2.
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Exercise 9.4. Fvaluate
// 22z +y%z dS,
M

where M is the surface of the half-sphere 2 +y%> 4+ 22 =4, 2 > 0.

Solution:
The surface M = {(x,y,2) € R® | 22 + y? + 22 = 4 & 2z > 0} can be parametrized with the use of

spherical coordinates as
D(p,9) = (2sinv cos @, 2sin ¥ sin @, 2 cos ¥)

and domain

U: 0<p<2r & Ogﬂgg.
Moreover, we have
0P . . .
— = (—2sin¥sin g, 2sin ¥ cos ¢, 0)
dg
0P

59 = (2 cos ¥ cos g, 2 cos vV sin p, —2s8in ).
Before evaluating the norm of the vector product, we may notice that the given vectors are orthogonal,
that is g—i .92 _ (). Then, we have

ov

0P 09 0P 0P

P N =1Z] L] = 4] sinv).

Hau o H&'u ‘ ov |sind|

Thus,
% 27

//x22+y2z s = //(851n219(zos19) -4]sind| dS = (/32Sin31900$19 dﬁ) . (/1 dgp) =
M U 0 0

[NE]

—or [8 sin? 19} — 167
0

10 Green, Gauss, and Stokes theorems

Exercise 10.1. Use Green’s theorem to find the work done by the force field ﬁ(x, y,2) = (2293, 42%y?) on a
particle moving along the path T, that is the boundary of the region M bounded by the curves y =0, x =1
and y = x3 in the first quadrant. The path T is positively oriented (anticlockwise).

Solution:

We have,
M: 0<z<1 & 0<y<z®

Its boundary is a piecewise differentiable path, _griented like in the hypothesis of Green’s theorem.
Using Green’s theorem for the vector field F' = (Fy, F3), we have

/F~ds://(%—%l;l) ds,
M

oM
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where the formula on the right side can be remembered like 22 — 2F1 — 7 oy ‘
O dy Fi P,
We have,
0F, O0F; 9 9 9
— - —— =38 -6 =2
Ox Jy w o w
therefore
OF, OF b /
2 2
/ Fds-// —2——1 ds = //2951/ dS://Qacdeyda::/gxmdxzﬁ.
r=oM 0 0 0

Exercise 10.2. Fvaluate the surface integral

[[¥-as,
M

where F(z,y, 2) = (22,9, 2%) and M is the sphere (x—a)*+(y—b)?+(2—c)? = R? with outward orientations
and R > 0 is a parameter.

Solution:
The flux of the vector field F : M — R3 through the oriented surface M C R? is evaluated as

/M/F.dgz/U/F(q)(u,v) <g® gf>ds

where ® : U — M is a suitable parametrization, U C R2, and the orientation given by the vector field
‘?)—i’ X ‘?—q’ agrees with the one given by the parametrization of the surface M. (In case the orientation
should not agree, it is enough to change the order of the vectors in the vector product, that is equivalent

to changing the sign of the integral.)

We evaluate the integral using the definition (even if we could use Gauss theorem, being the surface
a closed one). The surface M will be parametrized using spherical coordinates with a shift:

x—a = Rsindcosy
D y—b = Rsindsing
z—c = Rcos?

with domain
U: 0<p<2r & 0<v9¥<7.

We have

g% = ( —Rsindsinp, Rsind cos @, 0 )
f;—?,? = ( Rcosdcos p, Rcosdsinp, —Rsinﬂ)
a
0P 0d
7% X 59 = —Rsind - (Rsinﬁcosgo,Rsinﬁsingp,Rc0519) — _Rsind - (x —a, y—b, 2 — c).
¥
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The vector (z —a, y—b, z—c) is oriented from the point (a, b, ¢) to the point (z,y, z) € M, thus the

vector product has opposite orientation than the outward one required in the problem. Then, instead
of g—q) X g—%, in the integral we use ‘3—3 X g—i.
For the scalar product in the integral, we have

od 09

Rsindcos ¢
= Rsind - ((a—l—Rsinﬁcosgo)Q, (b+ Rsin¥sin p)?, (c+Rcosz9)2)~ Rsindsin
Rcos?
= R%sin® - [2R(a0052apsin219+bsin2cpsin219+0005219) +CQCOSQ9+RZCOS?’19+"'}

where the dots indicate terms where it is possible to factor out either ” sin ¢” or ” cos ¢” with an odd
power; those terms have a zero contribute in the integral. We have

//F-d§=
M

R?sin® - [2R(a cos? sin? 9 + bsin? ¢ sin® ¥ + ¢ cos? 19) + ¢ cos ¥ + R? cos® 19] do dy =
0<p<an
0<I<m

™

= /R2 sin ¢ - [2R(7ra sin 9 + wbsin? VY + 2me cos? 19) + 2mc? cos 9 + 2w R? cos® 19] dd =
0

K T

=2R%7(a +b) - /sin3 9 d | +4R%rc - /0052 Jsind dv | +
0

0
+R*nc? - /Sin(219) d¥ | +2R*r - /cosgﬁsinﬁ dd | =
0 0
2R%m(a + b) ](1 cos? ¥) sind do | + AR [ Cosgﬂ]”wR‘* [ COSW]”
= ™ . — n mc- | — T | = =
“ ¢ 3 lo 4 lo
0
2 2 8T R3
= 2R37r(a+b)-(2—3)+4R37rc-3 = 773 (a+b4c).

Exercise 10.3. Using Stokes’ theorem, evaluate

/F-ds,

OM
where

(i) F(z,y,2) = (y* — 22,22 — 2%, 2% — y?) and M is the intersection of the cube J = (0,a)? with the plane
r+y+ 2= 5. The orientation is given by the order of the points (%,m 0), (a70, %) and (a7 5 0).

(ii) F(x,y,2) = (y?,2%,2%) and M is the triangle (a,0,0), (0,a,0) and (0,0,a). The orientation is the one
given by order of the vertexes.
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Solution:
Stokes’ theorem is the extension of Green’s theorem from R? to R3:

¥ eds= [[ cur)
oM M

where the orientation of the surface and the one of its boundary must agree with the rule of the right
hand (posing the right hand with the fingers pointing in the positive direction of the boundary, the tum,
orthogonal to the rest of the fingers, is pointing in the direction of the positive normal to the surface),
(i.e. the orientation of the boundary of the surface appears anticlockwise if viewed from the ”top” of
the normal vector to the surface).

(i) The set M is a regular hexagon with side length ga. Moreover, we have
curl(F) = ( — 2y — 2z, —2x — 2z, —2x — 2y) .

The normal vector to the surface M is the normal vector to the plane where M lies, after we normalize
it, we get n = ?(1, 1,1) (the direction of the vector is the wanted one). For the evaluation of the
integral, we use

e the definition of flux of a vector field through a surfce,

e the fact that points on the surface satisfy the equation z +y + z = 3—“ and

e the fact that we know the area of a regular hexagon:

//curl dS = // curl(F S:—Zhg/g//x—ky—kzds——//dS—

:_zfa//lds——zfa 3V s —ga?’.

(ii) We follow a similar approach to the one used in (i). The set M is an equilateral triangle with
side length v/2a and it lies on the plane = + y + z = a. Moreover, we have

curl(F) = (- 2z, -2z, —2y) .

The normalized normal vector to the oriented surface M is n i(l 1,1). We evaluate:

//curl(F)«d§://(curl(F)-n) dSQ\S/g//ery+zdS//adS
M M M

2V/3a \/32 3

= — —a° = —a

3 2

Exercise 10.4. Using Stokes’ theorem, evaluate

// curl(F)
M

where F(x,y, z) = (vyz,z,e* cos z) and M is the half sphere x> +y*+2% = 1, z > 0 with upward orientation.
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Solution:
We have
M: 224+ +22=1 & 2>0

and
OM: 2>4+9y*=1 & 2=0.

The surface M has upward orientation, thus the orientation of its boundary OM agrees, for example,
with the one given by the parametrization ¢(«) = (cos @, sin, 0), for 0 < o < 27.

We have:
¢'(a) = (—sina, cos a, 0)
27 . —sina 27
//curl(F)~dS: /F~ds:/(O,coso¢,esmo‘°°SQ)~ cos & da:/c052a do = .
M oM 0 0 0

Exercise 10.5. Using Gauss’ theorem evaluate the fluz of the vector field F = (3y?z3,92%y2?%, —4xy?)
through the surface of the cube M = (0,1)3 C R3.

Solution:
Gauss’ theorem

//F.dsz///div(F)dv

oM M

puts in relation the flux of a vector field F through the boundary OM of a region M in R3 with the
triple integral over the region M. The function

integrated over M is a vector field called divergence of F and it is interpreted as a ”source” of the vector
field at a given point (in case it has a positive value) or a ”sink” of the vector field at a given point (in
case it has a negative value). With Gauss’ theorem we show that the "total change of the vector field”
inside the region corresponds with the flux of the vector field through its boundary.

Using Gauss’ theorem, we suppose that the surface of the cube OM has outward orientation. We

have
div(F) = 92222

and
ZZF-dS/A//I/div(F)dVO/O/O/Q:UQszzdydz(0/9x2dx>'(0/1dy>'(o/z2dz)1.

Exercise 10.6. Verify Gauss’ theorem for the vector field F = (23,y3, 23) and the sphere x> + y* + 22 = 1.

Solution:
We verify Gauss’s theorem

//F'ds_/é/div(F)dV

oM
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proving that both integrals have the same value.
In our case, we have
M: 2> +y*+22<1
and
OM: 2 +y*+22=1.
The orientation of the boundary M, in this case, is given by the normal vector pointing outside.
We have
div(F) = 3(2? + 3y + 2?)

///dw ) dV = /// o+ 9P +22) dV =

and

z=r cos ¥
(r,0,9)€(0,1) x(0,27) x

=7 sin Y cos ¢
y=rsin ¥ sin ¢
(0,m)

:]7/13T2 |7 sind| dr dip dV = (/3r dr)-(71dgp>-<]sin19d19>:§.27r.2 15277.
0 0 A ) J

For the second integral, we choose to parametrize M using spherical coordinates
D(p,¥) = (sin ¥ cos p, sin ¥ sin @, cos J),

with domain

We have
g—‘i = (—sindsingp, sindcosp, 0 )
g—f; = ( cosdcosyp, cos¥sing, —sind)
and
o 09
P X oo = —sin® - (sind cos p, sin ¥ sin , cos ¥) = —sin - (i, 9).
The vector @ X 8—3 has the direction of the normal vector pointing inside. Since the surface has

outward 01r1entation7 in evaluating the flux of the vector field, we will consider the opposite vector, that
is — 02 92 _ 02 . 0
dp 99 — 89 " dp-
Substituting, we obtain

//F~dS://F(<I>(gp,19))- gq’ gf;)ds //F(cp(%ﬁ)).(mﬂ@@,ﬂ))dsz
oM U

U

27

://s1n19 sin® ¥ cos* ¢ + sin? ¥sin?  + cos 19) do dd =
0 0

T 27 e 27
(/sin519 d19) . (/cos4cp+sin4cp dgo) + (/Cos419$in19 d19> . (/1 dgo).
0 0 0 0
For the first two integrals, due to shift and symmetry, we have that
27 27 %
/cos4<p do = /Sin4<p dy :4/sin4ap dy
0 0 0
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and

For n > 2 we evaluate the integral

/sm a da =]
0
=(n-1) /
0

Thus, we have A,, = 2= 1An 9 a Ay =

4 2
//F-dS— (2g -
oM

and Gauss’ theorem is thus verified.

/sm ¢ dy
0

—cosa -sin"”

s

4

)

8.

sin® 9 dy.

o\

g—i-/n—l sin" % - cos? a da =
0

(1—sin?a)da=(n—1)A, 5 — (n—1)A,.

a Ag = 1. Carrying on the calculation, we get

3
4

D+ (-5 () - v -

12
5

—,
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11 Fourier series

Exercise 11.1. Ewvaluate the Fourier series of the periodic extension of f(t) =t* on [—1,1).

Solution:

Definition Let f be a function that is T-periodic and integrable on [0, T

OO
We define its Fourier series as % + Z [ar, cos(kwt) + by, sin(kwt)], where w = 2% is the frequency,

T
ap = %/f (t) cos(kwt) dt, for k € No,
0

and

T
b = %/f )sin(kwt) dt, for k € N.
0

We use the notation

f% g Z ay, cos(kwt) + by sin(kwt)].
k=1

T/2
Observation (i) If f is odd, then ax = 0 and by, = % J f(¢)sin(kwt)

T/

(ii) If f is even, then by = 0 and ap = f F(¢) cos(kwt) dt.

For the given function f, we have T' = 2, thus w = 7. We evaluate:

1
2
a():%/f(t)dt:/f(t)dt:/t%lt:5,
0 1 1
1
4 4(—1)*
ar = 2 [ t*cos(kmt) dt = cos(hm) _ 4(=1)

m2k2 T w2k2

1
b = 2 /t2 sin(kwt) dt = 0.
1

Thus

3+ Z ACDE cos (kmt).

Observation: Jordan criterion states the following:

Let f be a T-periodic function that is piecewise continuous on some interval I of length T, assume that it has a
derivative f’ piecewise continuous on I.

Let f~ %2 + Z [a, cos(kwt) + by, sin(kwt)]. Then for every ¢t € R we have

lim

N
N%o( Z ag cos(kwt) + by, sm(kwt)]) L) + £

If moreover f is continuous on R, then a“

Z [ay, cos(kwt) + by, sin(kwt)] is uniformly convergent to f.

In the given example, we have evaluated that, for every t € [—1,1]

00 Lk

t2=1+ kz 4;2;% cos(kmt).
=1

If we use this equality for ¢t = 0, we get the sum of a particular numerical series

Z 1)k _ 2

= 12
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While, for t = 1, we get

Exercise 11.2. Consider the function

f(t):{ t ,tel0,1)

0 ,te[l,2)

Evaluate (a) the Fourier series, (b) the sine Fourier series and (c) the cosine Fourier series of the appropriate
periodic extension of f.

Solution:

Definition Let f be a function defined and continuous on [0, L). We define its sine series as the Fourier series of its
odd periodic extension. We define its cosine series as the Fourier series of its even periodic extension

L
Observation The sine Fourier series of f can be obtained as a Fourier series with ax = 0, by, = % J f(t) sin(kwt) dt
0
and w = T.

L
The cosine Fourier series of f can be obtained as a Fourier series with by =0, ar = £ Ir

t) cos(kwt)dt and w = T

T
0
Remark: The sum of the sine series is a 1" = 2L-periodic extension of f into an odd function. The sum of the cosine
series is a T' = 2L-periodic extension of f into an even function. Both sums must be also modified using the Jordan
criterion.

In our case 0.1)
t ,telo,
1) {o e (L?)

(a) For the Fourier series of f, we have: T =2, w =1

2 1
ot fo

m\w

by, = —

1
: /cos (kmt) d [% sin(lmrt)](l) =0.
0
1
%/sin(lmrt) dt [—% cos(lmt)}(l) = kiﬂ'[l — cos(km)] %[1 —(=1)¥] { (zzk—%l)ﬂ : Z z\éedn
0
Thus - .
f~it ; %[1 — (=D)¥]sin(krt) = 5+ >

(b) For the sine Fourier series of f, we have: L =2, T

1
2 T \q1
= %/sm = [—Ecos(kit)]o =
0

Thus the sine Fourier series of the given function f is

2 s
T [cos(km) — cos (/ci)}

2 T, . T
; E[(fl)k - cos(k:i)] 51n(k§t).
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1
2 2
= %/cos [E sm(k t)] Esin(kg).
0
Thus the cosine Fourier series of the given function f is
I 2 i
5 ; ]{ji COS (:ZC B t)
Here ay, = 0, agk1 = (—1)" iy, 50 5 + kgo(*l)kﬂﬁcos((% +1)51)
Exercise 11.3. Ewaluate the Fourier series of the periodic extension of f(t) =sint, 0 <t < Z. Specify to
which function the Fourier series converges
Solution:
The period of the function is 7' = Z, thus w = 4. The given function is neither even nor odd. The

coefficients of the Fourier series are evaluated as follows

4 z 4
sintdt = —[—cost]@ dt = —.
m m

4
apg = —
s

o\wm

3
4
— / sint cos(4kt) d (sin(4k + 1)t — sin(4k — 1)t) dt
™

0

3 \ DO
PSS~y

_ 2| cos(dk+1)t  cos(dk—1)t|" 2 11 B —4
o 4k + 1 4k —1 0_ 4k+1 4k—1)  7(16k2—1)
4 2 2 2
b, = — /sintsin(4kt) dt = — / (= cos(4k + 1)t + cos(4k — 1)t) d
™ ™
0 0
C2[  sin(k+ 1)t cos(k—1t|? 2 1 1\ —16
T 4k +1 4k —1 T dk+1 4k—1) 7(16k2—1)
Thus
2 (o)
— 54 4k sin4 R.
- z:: 16k2 (cos 4kt 4 4k sindkt), t €
The periodic extension of the given function is not continuous at points t = 25, k € Z. At this points
L[f(t7) + f(t*)] = 3. At any other point, the Fourler series converges to

the Fourier series converges to
the periodic extension of the given function
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Exercise 11.4. Evaluate the Fourier series of the periodic extension of f(t) = |t|, =1 <t < 1.

Solution:

The period of the function is T' = 2, thus w = %’r The extension of the given function is even, thus

br, = 0. The other coefficients of the Fourier series are evaluated as follows:

1

1
2 2
=2- [tdt=2|—=| dt=1;
=2} [rae=a|g] aes

0

(coskm —1).

1 1

sinknt  coskmt 2

ar = 2/tcos krntdt =2 [t = + pE ] = s
0

We now observe that, for every even k, coskm = 1, thus ay = 0; while for every odd k, k = 2n + 1,
cos(2n + 1)m = —1, thus ag,y1 = Wﬁl)?' We conclude that the Fourier series can be written as
follows

1 o0

4
= - — —_ 2 )mt, t € R.
b 5 T;)w2(2n+1)2 cos(2n + L)mt, t €

Since the periodic extension of the given function is continuous, the Fourier series converges uniformly
to it on R, that is why we have written a sign of equality between f and the Fourier series.

Exercise 11.5. FEwaluate the sine Fourier series of the appropriate periodic extension of f(t) = sint, 0 <
t < 5. Specify to which function the Fourier series converges.

Solution:
In evaluating the sine Fourier series of a function defined on an interval [0,L), we must start from

extending the given function in an odd way to the interval [-L, L). In our case L = 7, and extending
the function sint in an odd way to the interval [—Z 2 2) we get again the sine function. Thus the sine
Fourier series of the function f(t) = sint, 0 < ¢ < Z is equivalent to the Fourier series of the function
f(t) =sint, =3 <t < T. All coefficients ay, are zero due to the symmetry, for the b, we get

=2 (= cos(2k + 1)t + cos(2k — 1)t) dt =

N o

3 \ )
O\w\:\

s

2
/smtsm (2kt) dt =
0

™ ™

_ 2| sin@k+ 1)t cos(2k— D)t 2 2 (- L DM sk
2k +1 2k —1 2k +1 2k —1 | 7w(4k2—1)

We get
1)k+1

8k(—
f~ Z 4k:2 sm 2kt, t € R.

The odd periodic extension of the given function is not continuous at points t = 3 + kn, k € Z. At this
points the sine Fourier series converges to 1[f(¢t7) + f(t*)] = 0. At any other point, the sine Fourier
series converges to the odd periodic extension of the given function.

Exercise 11.6. Consider the function




Evaluate the Fourier series of the appropriate periodic extension of f.

Solution:
For the Fourier series, we have T' = 2, thus w = m. We evaluate now the coefficients:

2

aog(/lldth/th) =—1;
0

1

1 2
2
ay = 5(/cosk7rtdt72/(:osk7rtdt) =0;
0 1
2

1

2 . . 3 & 0 , keven,
by = 5(/51nk7rtdt—2/smk:7rtdt> _E[l_(_l) ]—{ 6k odd.

0 1
Thus, using k = 2n + 1 to indicate all odd numbers like in Exercise 4:
1
2

1 <3 o = 6 _
~ E 2 M=(-1 knt = — E [ 2 Dnt, t € R.
R = A e
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