Linear Algebra - Practice 5

1) Find the parametric and canonical equation of the line p passing through the points $A=[1,0,2]$ and $B=[3,1,-2]$; check whether the point $M=[7,3,1]$ lies on p.
2) Given the plane σ and the point A, verify that A does not belong to σ and find the equation of the plane ρ through A parallel to σ, where:

$$
\sigma: \quad 2 x+7 y-3 z=1 \quad A=[1,1,1]
$$

3) Find the distance between the point $A=[-1,-1,1]$ and the line p, intersection of the planes $2 x-y+3 z+2=0$, and $x+2 y-z+1=0$.
4) Find the plane σ going through the points $A=[2,1,-3], B=[-3,2,0]$, $C=[0,3,-5]$ and determine the angle between σ and the line
$p: \quad \frac{x-2}{-1}=\frac{y+1}{1}=\frac{z-3}{2}$.
5) Find an equation for the plane passing through the point $A=[1,0,-2]$ and containing the line p with equation $X=[1,1,-1]+t(3,2,0), t \in \mathbb{R}$.
6) Find the intersection of the line $p: \quad X=[1,-2,0]+t(3,4,2) \quad t \in \mathbb{R}$ with the plane σ containing the point $S=[19,13,9]$ and the line s : $X=[-3,-1,2]+u(2,0,3), \quad u \in \mathbb{R}$.
7) Prove that the lines p and q are skewed, and find an equation of the line r that intersects p and q and is orthogonal to both, where: $p: X=[-4,4,1]+t(2,-1,-2), t \in \mathbb{R}, \quad q: X=[-5,5,5]+s(4,-3,-5), s \in \mathbb{R}$.
8) Find the point R symmetric to $P=[-1,5,0]$ with respect to the plane σ through $A=[4,2,1], B=[-4,-3,-1]$ and $C=[0,1,3]$.
