Petr Habala: Publikace

Math Tutor, on-line math tutoring site (2000-2010, 2019-2020).

Sequences and series: a tool for approximation and Derivative: tool for approximation and investigation, chapters in Calculus for Engineering Students - Fundamentals, Real Problems, and Computers (editors: Jesus Martin Vaquero, Michael Carr, Araceli Quieruga-Dios, Daniela Richtarikova), Mathematics in Science and Engineering, Elsevier Science Publishing Co Inc, 2020.

A new numerical methods library for Maple, 19th Conference on Applied Mathematics, APLIMAT 2020 Proceedings, Bratislava (2020), pp. 582-586.

Teaching comprehension of mathematical language-a case for discrete approach (s M. Demlovou), Teaching Mathematics and its Applications (2019), 38 (3), pp. 123-134.

Differential Equations and Numerical Analysis in Bachelor Studies (invited talk), 18th Conference on Applied Mathematics, APLIMAT 2019 Proceedings, Bratislava (2019), pp. 476-481.

Banach Space Theory: The Basis for Linear and Nonlinear Analysis (s M. Fabiánem, P. Hájkem, V. Montesinem & V. Zizlerem), CMS Books in Mathematics XIV, Springer-Verlag, New York, 2011.

Finite Representability of lp in Quotients of Banach Spaces (s N. Tomczak-Jaegermann), Positivity 5(1) (2001), 75-94.

Functional Analysis And Infinite-Dimensional Geometry (s M. Fabiánem, P. Hájkem, V. Montesinem, K. Pelantem & V. Zizlerem), CMS Books in Mathematics 8, Springer-Verlag, New York, 2001.

A Uniformly Convex Banach Space Whose Subspaces Fail Gordon-Lewis Property (s V. Ferenczi), Arch. Math. 71 (1998), 481-492.

A Banach Space All of Whose Subspaces Fail the Gordon-Lewis Property, Math. Annal. 310 (1998), 197-219.

Introduction to Banach Space Theory (s P. Hájkem & V. Zizlerem), MatfyzPress, Charles University in Prague, Czechoslovakia, 1996.

Stabilization of Polynomials (s P. Hájkem), C.R. Acad. Sci. Paris Ser I Math. 320 (1995), no. 7, 821-825.

Stationary Incompressible Bipolar Fluids, Czechoslovak Math. J. 44 (1994), no.2, 347-356.

Zpět na mou Hlavní stránku.

Za obsah odpovídá: doc. RNDr. Martin Bohata, Ph.D.