Research interests:
Geometry of Banach spaces and differentiability of functions on Banach spaces; measure theory.Research papers:
- J. Tišer, On strict preponderant maxima, Comm. Math. Univ. Carolinae 22,3 (1981), 561-567
- D. Preiss, J. Tišer, Differentiation of Gaussian measures on Hilbert space, Lecture Notes Math. 945, Springer-Verlag, Berlin and New York 1981, 194-207
- J. Tišer, Differentiation Theorem for Gaussian measures on Hilbert space, Trans. Amer. Math. Soc. 308 (1988), 655-666
- J. Tišer, L. Zají ek, Typical measurable function in the topology of close approximation, Acta Math. Univ. Comenianae 60 (1991), 23-29
- D. Preiss, J. Tišer, Measures in Banach spaces are determined by their values on balls, Mathematika 38(1991), 391-397
- J. Tišer, Differentiation of Gaussian measures, Publications Math. de l´Univ. Pierre et Marie Curie 107(1991/92), No 9, 1-5
- D. Preiss, J. Tišer, On Besicovitch 1/2-problem, Journal of London Mathematical Society 45, No.2(1992), 279-287.
- L. Mejbro, D. Preiss, J. Tišer, Positivity principles in geometric measure theory, Supplemento di Rendiconti del Circolo Matematico di Palermo, Serie 11. 28, No. 2 (1992), p. 163-167.
- D. Preiss, J. Tišer, Points of non-differentiability of typical Lipschitz functions, Real Analysis Exchange 20 (1994/1995), 219-226.
- D. Preiss, J. Tišer, Two unexpected examples concerning differentiability of Lipschitz functions on Banach spaces, Geometic Aspects of Functional Analysis (Israel Seminar 1992-1994), Oper. Theory Avd. Appl. 27, Birghäuser Verlag, Basel (1995), 219-238.
- J. Gregor, J. Tišer, On convex combinations of Hurwitz polynomials, Appl. Math. and Comp. Sci. 6(1996), No 1, 33-47
- D. Preiss, J. Tišer, Posivity principle for more concentrated measures, Math. Scand. 81(1997), 236-246.
- J. Gregor, J. Tišer, On Hadamard powers of polynomials, Math. Control Signal Systems 11(1998), 372--378
- J. Tišer, Vitali covering theorem in Hilbert space, Trans. Amer. Math. Soc. 355, No.8 (2003), 3277-3289.
- M. Csörnyei, D. Preiss, J. Tišer, Lipschitz functions with unexpectedly large sets of nondifferentiability points, Abstract and Appl. Analysis 4(2005), 361-373.
- J. Tišer, A generalized sigma-porous set with a small complement, Abstract and Appl. Analysis 5(2005), 535-541.
- J. Lindenstrauss, D. Preiss, J. Tišer, Fréchet differentiability of Lipschitz maps and porous sets in Banach spaces, Banach Spaces and Their Applications in Analysis, de Gruyter-Berlin-New York, 2007, 111--123,
- J. Lindenstrauss, D. Preiss, J. Tišer, How small are σ-porous sets and why are we interested in it, Real Analysis Exchange, 31st Summer symposium conference, Oxford, 2008, 105-119,
- J. Lindenstrauss, D. Preiss, J. Tišer, Fréchet differentiability of Lipschitz functions via a variational principle, Journal of European Math. Soc. 12(2), 2010, 413-427
- J. Gregor, J. Tišer, Discovering Mathematics: A Problem-Solving Approach to Mathematical Analysis, Springer, 2010, 268 pp.
- J. Lindenstrauss, D. Preiss, J. Tišer, Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces, Princeton University Press 2012, 425 pp.
- J. Tišer, L. Zajíček, A criterion of Gamma-nullness and differentiability of convex and quasiconvex functions, Studia Mathematica 227(2), (2015), 149-164
- D. Preiss, E. Riss, J. Tišer, A set of positive Gaussian measure with uniformly zero density everywhere, Jour. European Math. Soc. 23(7), (2021), 2439-2466