Lineární algebra --- podzim 2023
Na této stránce naleznete výtahy z přednášek, jak se učit (nejen) lineární algebru, doporučenou literaturu, sbírky příkladů, odkazy na další možnou literaturu a videa týkající se předmětu a (velmi neúplný) seznam předmětů na FEL, kde znalosti lineární algebry využijete.
Hledáte-li požadavky k zápočtu, zkoušce, atd., naleznete je na stránkách jednotlivých mutací lineární algebry, které tento semestr přednáším:
Výtah z přednášek:
Pozor! Nejde o úplné studijní materiály. Těmi jsou především Vaše zápisky z přednášek a doporučená literatura. Dále jimi jsou skripta, knihy, atd, z ověřených zdrojů (krátký seznam je zde). Nevěřte anonymním zdrojům; mohou být dobré, mohou ale obsahovat závažné chyby.Níže vystavené výtahy z přednášek budu promítat na přednáškách. Budu ovšem i používat tabuli, na kterou budu psát důkazy, malovat obrázky, počítat příklady, atd. Doporučuji na přednášky chodit, před přednáškou si výtah přednášky vytisknout nebo stáhnout, a během přednášky si dělat poznámky.
Níže uvedená data probírané látky se budu snažit dodržovat. Poběží-li přednáška někdy rychleji nebo pomaleji, budu o tom informovat mailem.
Výtahy z přednášek jako jeden soubor.
- 1A: Lineární prostory nad R.
Klíčová slova: lineární prostor (nad reálnými čísly), (nulový) vektor, skalár, seznam vektorů, lineární kombinace.
Keywords: linear (vector) space (over reals), (zero) vector, scalar, list of vectors, linear combination.
Podrobnosti: AKLA, podkapitola 1.1 až 1.4. - 1B: Lineární prostory nad F.
Klíčová slova: těleso, lineární prostor (nad tělesem), (nulový) vektor, skalár, seznam vektorů, lineární kombinace.
Keywords: field, linear (vector) space (over a field), (zero) vector, scalar, list of vectors, linear combination.
Podrobnosti: AKLA, podkapitola 1.2 až 1.4. - 2A: Lineární obal a lineární podprostor.
Klíčová slova: lineární obal, uzávěrové vlastnosti lineárního obalu, lineární podprostor.
Keywords: linear span of a set (linear hull), closure properties of a linear span (of a linear hull), linear subspace.
Podrobnosti: AKLA, podkapitola 1.5 a 1.6. - 2B: Lineární závislost a nezávislost.
Klíčová slova: (triviální/netriviální) lineární kombinace, lineární závislost/nezávislost.
Keywords: (trivial/nontrivial) linear combination, linear dependence/independence.
Podrobnosti: AKLA, podkapitola 3.1. - 3A: Báze a dimenze.
Klíčová slova: množina generátorů, báze, konečná množina, dimense, spojení podprostorů.
Keywords: spanning set, basis, finite set, dimension, sum (join) of subspaces.
Podrobnosti: AKLA, podkapitola 3.1 až 3.3, 3.6. - 3B: Souřadnice vzhledem k uspořádané bázi a komutativní diagramy.
Klíčová slova: souřadnice, kanonická (standardní) báze, zobrazení, komutativní čverec.
Keywords: coordinates, canonical (standard/natural) basis, mapping, commutative square.
Podrobnosti: AKLA, podkapitola 3.1 až 3.3, 2.2. - 4A: Lineární zobrazení.
Klíčová slova: lineární zobrazení, princip superposice, lineární prostor lineárních zobrazení, matice, projekce, rotace, maticový zápis soustavy lineárních rovnic.
Keywords: linear mapping, superposition principle, linear space of linear mappings, matrix, projection, rotation, matrix form of a system of linear equations.
Podrobnosti: AKLA, podkapitola 2.1, 2.2 a 4. - 4B: Algebra matic.
Klíčová slova: sčítání a násobení matic.
Keywords: matrix addition and matrix multiplication.
Podrobnosti: AKLA, podkapitola 2.1, 2.2 a 4. - 5A Lineární zobrazení, část 2.
Klíčová slova: monomorfismus, epimorfismus, isomorfismus, jádro, obraz, defekt, hodnost, matice lineárního zobrazení, regulární (invertibilní) matice.
Keywords: monomorphism, epimorphism, isomorphism, kernel, image, defect, rank, matrix of a linear mapping, regular (invertible) matrix.
Podrobnosti: AKLA, podkapitola 2.3, 3.4 a 9.1. - 5B Transformace souřadnic.
Klíčová slova: transformace souřadnic v jedné bázi na souřadnice v jiné bázi, podobné matice.
Keywords: transformation of coordinates in one basis to coordinates in another basis, similar matrices.
Podrobnosti: AKLA, podkapitola 9.2 a 9.3. - 6A: GEM a soustavy lineárních rovnic, část 1.
Klíčová slova: (homogenní) soustavy lineárních rovnic, GEM, elementární řádkové úpravy, horní blokový tvar matice, Frobeniova věta o řešitelnosti soustav lineárních rovnic.
Keywords: (homogeneous) systems of linear equations, GEM, elementary row operations, row-echelon form of a matrix, solvability theorem for systems of linear equations.
Podrobnosti: AKLA, kapitola 6. - 6B: GEM a soustavy lineárních rovnic, část 2.
Klíčová slova: maticové rovnice, nalezení soustavy pro známou množinu řešení.
Keywords: matrix equations, finding a system of equations for a given solution.
Podrobnosti: AKLA, kapitola 6. - 7A: Determinant, část 1.
Klíčová slova: permutace, strunový diagram, znaménko permutace, determinant matice, geometrický význam determinantu, výpočet determinantu pomocí GEM.
Keywords: permutation, string diagram, sign of a permutation, determinant of a matrix, geometric interpretation of a determinant, computation of a determinant using GEM.
Podrobnosti: AKLA, podkapitola 8.1 a 8.2. - 7B: Determinant, část 2.
Klíčová slova: algebraický doplněk posice v matici, Laplaceova věta o rozvoji determinantu podle sloupce (řádku), inverse matice pomocí algebraických doplňků, Cramerova věta (pravidlo).
Keywords: cofactor of a position in a matrix, Laplace column (row) expansion of a determinant, matrix inversion using cofactors, Cramer's Theorem (Rule).
Podrobnosti: AKLA, podkapitola 8.3 a 8.4. - 8A: Vlastní čísla a vlastní vektory.
Klíčová slova: vlastní číslo (hodnota), vlastní vektor, invariantní prostor, charakteristický polynom matice.
Keywords: eigenvalue, eigenvector, eigenspace, characteristic polynomial of a matrix.
Podrobnosti: AKLA, podkapitoly 10.1, 10.3 a 10.4. - 8B: Diagonalisace matic.
Klíčová slova: diagonalisace matice, kořeny polynomů.
Keywords: diagonalisation of a matrix, roots of polynomials.
Podrobnosti: AKLA, podkapitoly 10.1, 10.3 a 10.4. - 9A: Jordanův tvar.
Klíčová slova: direktní rozklad, nilpotentní matice, Jordanův tvar.
Keywords: direct decomposition, nilpotent matrix, Jordan form.
Podrobnosti: AKLA, podkapitoly 11.1,11.3 a 11.4. - 9B: Abstraktní skalární součin.
Klíčová slova: skalární součin, norma vektoru, ortogonální vektory.
Keywords: inner product, norm of a vector, orthogonal vectors.
Podrobnosti: AKLA, podkapitola 12.1 a 12.2. - 10A: Charakterisace skalárních součinů v R^n.
Klíčová slova: positivně definitní matice, Gramova matice (tensor skalárního součinu).
Keywords: positive definite matrix, Gram's matrix (tensor of an inner product).
Podrobnosti: AKLA, podkapitola 12.1, 12.2 a 12.3. - 10B: Ortogonalisace a ortogonální projekce.
Klíčová slova: ortogonální báze, ortonormální báze, ortogonální projekce, ortogonální rejekce, ortogonalisační proces (Gram-Schmidt).
Keywords: orthogonal basis, orthonormal basis, orthogonal projection, orthogonal rejection, Gram-Schmidt orthogonalisation process.
Podrobnosti: AKLA, podkapitola 12.4. - 11A: Matice ortogonální projekce a metoda nejmenších čtverců.
Klíčová slova: matice ortogonální projekce, metoda nejmenších čtverců.
Keywords: orthogonal projection matrix, least-squares method.
Podrobnosti: AKLA, dodatek C. - 11B: SVD rozklad a pseudoinverse.
Klíčová slova: singulární vlastní číslo (hodnota), pseudoinverse.
Keywords: singular eigenvalue, pseudoinverse.
Podrobnosti: AKLA, kapitola 14. - 12A: Vzájemná poloha afinních podprostorů.
Klíčová slova: různoběžnost, rovnoběžnost, mimoběžnost podprostorů.
Keywords: parallel, intersecting, skew subspaces.
Podrobnosti: AKLA, podkapitoly 7.1, 7.2 a 7.3. - 12B: Vektorový součin.
Klíčová slova: vektorový součin, Gramův determinant.
Keywords: vector (outer) product, Gram's determinant.
Podrobnosti: AKLA, dodatky B.1 a B.2. - 13A: Metrické výpočty v R^3.
Klíčová slova: vzájemná vzdálenost podprostorů.
Keywords: distance of subspaces.
Podrobnosti: AKLA, dodatky B.3 a B.4. - Využití lineární algebry v počítačové tomografii a při vyhledávání na webu.
Jak se učit (nejen) lineární algebru:
Přečtěte si například stránky mathscareers nebo se podívejte, jak radí Vašim kolegům University of Cambridge.Doporučená literatura:
- Jiří Velebil: Abstraktní a konkrétní lineární algebra. V těchto skriptech naleznete všechnu odpřednesenou látku.
Sbírky příkladů:
- Jiří Velebil: Sbírka problémů z lineární algebry.
- Karel Výborný, Miloš Zahradník: Používáme lineární algebru.
- Jiří Fiala, Luděk Kučera, Marek Krčál, Bernard Lidický, Tomáš Vyskočil: Lineární algebra I a II .
- Przemyslaw Bogacki: Linear algebra toolkit .
Vhodné učebnice lineární algebry a další studijní texty:
- Larry W. Cusick: How to write proofs . Silně doporučený text (zvláště před zkouškou). Nesouvisí s lineární algebrou, ale ujasní nejrůznější způsoby dokazování.
- Dan Margalit, Joseph Rabinoff, Interactive linear algebra. Vynikající interaktivní učebnice. Pokrývá naprostou většinu odpřednesené látky. Existuje i její verse v PDF.
- Jim Hefferon: Linear algebra . Výborná kniha se spoustou zajímavých příkladů. Pokrývá naprostou většinu odpřednesené látky.
- Luboš Motl, Miloš Zahradník, Pěstujeme lineární algebru . Pěkná knížka s řadou zajímavých příkladů. Pozor: obsahuje i řadu témat, která probírat nebudeme.
Vhodná videa o lineární algebře:
- Po přihlášení do předmětu A8B01LAG/B0B01LAG/B0B01LAG na MOODLE FEL jsou dostupná videa přednášek z roku 2020.
- Essence of linear algebra je soubor krátkých videí o geometrii vektorů, lineárních kombinací, determinantu, atd.
- Mathsters je soubor krátkých videí o množinách, matematické indukci, základních vlastnostech funkcí atd. Velmi vhodné pro osvěžení pojmů ze střední školy.
Některé předměty FEL, ve kterých využijete znalosti lineární algebry:
- Počítačové hry.
- Elektromagnetické pole.
- Pravděpodobnost, statistika a teorie informace.
- Matematická kryptografie.
- Výpočetní geometrie.
- 3D počítačové vidění.
- Pokročilá kinematika robotů.
- Analýza experimentálních dat.
- Optimalizace.
- Statistical machine learning.
- A řada dalších.
Poslední změna: 20. 9. 2023